47 resultados para Panel data analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using panel data for 111 countries over the period 1982–2002, we employ two indexes that cover a wide range of human rights to empirically analyze whether and to what extent terrorism affects human rights. According to our results,terrorism significantly, but not dramatically, diminishes governments’ respect for basic human rights such as the absence of extrajudicial killings, political imprisonment, and torture. The result is robust to how we measure terrorist attacks, to the method of estimation, and to the choice of countries in our sample. However, we find no effect of terrorism on empowerment rights.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little research so far has been devoted to understanding the diffusion of grassroots innovation for sustainability across space. This paper explores and compares the spatial diffusion of two networks of grassroots innovations, the Transition Towns Network (TTN) and Gruppi di Acquisto Solidale (Solidarity Purchasing Groups – GAS), in Great Britain and Italy. Spatio-temporal diffusion data were mined from available datasets, and patterns of diffusion were uncovered through an exploratory data analysis. The analysis shows that GAS and TTN diffusion in Italy and Great Britain is spatially structured, and that the spatial structure has changed over time. TTN has diffused differently in Great Britain and Italy, while GAS and TTN have diffused similarly in central Italy. The uneven diffusion of these grassroots networks on the one hand challenges current narratives on the momentum of grassroots innovations, but on the other highlights important issues in the geography of grassroots innovations for sustainability, such as cross-movement transfers and collaborations, institutional thickness, and interplay of different proximities in grassroots innovation diffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a newly developed integrated indicator system with entropy weighting, we analyzed the panel data of 577 recorded disasters in 30 provinces of China from 1985–2011 to identify their links with the subsequent economic growth. Meteorological disasters promote economic growth through human capital instead of physical capital. Geological disasters did not trigger local economic growth from 1999–2011. Generally, natural disasters overall had no significant impact on economic growth from 1985–1998. Thus, human capital reinvestment should be the aim in managing recoveries, and it should be used to regenerate the local economy based on long-term sustainable development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we address three challenges. First, we discuss how international new ventures (INVs) are probably not explained by the Uppsala model as there is no time for learning about foreign markets in newly born and small firms. Only in the longer term can INVs develop experiential learning to overcome the liability of foreignness as they expand abroad. Second, we advance theoretically on previous research demonstrating that the multinationality−performance relationship of INVs follows a traditional S-shaped relationship, but they first experience a ‘born global illusion’ which leads to a non-traditional M curve. Third, using a panel data analysis for the period 1994–2008 we find empirically that Spanish INVs follow an inverted U curve in the very short term, where no learning takes place, but that experience gained over time yields an M-curve relationship once learning takes place.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – This paper aims to make a comparison, different from existing literature solely focusing on voluntary earnings forecasts and ex post earnings surprise, between the effects of mandatory earnings surprise warnings and voluntary information disclosure issued by management teams on financial analysts in terms of the number of followings and the accuracy of earnings forecasts. Design/methodology/approach – This paper uses panel data analysis with fixed effects on data collected from Chinese public firms between 2006 and 2010. It uses an exogenous regulation enforcement to minimise the endogeneity problem. Findings – This paper finds that financial analysts are less likely to follow firms which mandatorily issue earnings surprise warnings ex ante than those voluntarily issue earnings forecasts. Moreover, ex post, they issue less accurate and more dispersed forecasts on former firms. The results support Brown et al.’s (2009) finding in the USA and suggest that the earnings surprise warnings affect information asymmetries. Practical implications – This paper justifies the mandatory earnings surprise warnings policy issued by Chinese Securities Regulatory Commission in 2006. Originality/value – Mandatory earnings surprise is a unique practical regulation for publicly listed firms in China. This paper, for the first time, provides empirical evaluation on the effectiveness of a mandatory information disclosure policy in China. Consistent with existing literature on information disclosure by public firms in other countries, this paper finds that, in China, voluntary information disclosure captures more private information than mandatory information disclosure on corporate earnings ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on the wealth-protective effects of socially responsible firm behavior by examining the association between corporate social performance (CSP) and financial risk for an extensive panel data sample of S&P 500 companies between the years 1992 and 2009. In addition, the link between CSP and investor utility is investigated. The main findings are that corporate social responsibility is negatively but weakly related to systematic firm risk and that corporate social irresponsibility is positively and strongly related to financial risk. The fact that both conventional and downside risk measures lead to the same conclusions adds convergent validity to the analysis. However, the risk-return trade-off appears to be such that no clear utility gain or loss can be realized by investing in firms characterized by different levels of social and environmental performance. Overall volatility conditions of the financial markets are shown to play a moderating role in the nature and strength of the CSP-risk relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Virtual globe technology holds many exciting possibilities for environmental science. These easy-to-use, intuitive systems provide means for simultaneously visualizing four-dimensional environmental data from many different sources, enabling the generation of new hypotheses and driving greater understanding of the Earth system. Through the use of simple markup languages, scientists can publish and consume data in interoperable formats without the need for technical assistance. In this paper we give, with examples from our own work, a number of scientific uses for virtual globes, demonstrating their particular advantages. We explain how we have used Web Services to connect virtual globes with diverse data sources and enable more sophisticated usage such as data analysis and collaborative visualization. We also discuss the current limitations of the technology, with particular regard to the visualization of subsurface data and vertical sections.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While over-dispersion in capture–recapture studies is well known to lead to poor estimation of population size, current diagnostic tools to detect the presence of heterogeneity have not been specifically developed for capture–recapture studies. To address this, a simple and efficient method of testing for over-dispersion in zero-truncated count data is developed and evaluated. The proposed method generalizes an over-dispersion test previously suggested for un-truncated count data and may also be used for testing residual over-dispersion in zero-inflation data. Simulations suggest that the asymptotic distribution of the test statistic is standard normal and that this approximation is also reasonable for small sample sizes. The method is also shown to be more efficient than an existing test for over-dispersion adapted for the capture–recapture setting. Studies with zero-truncated and zero-inflated count data are used to illustrate the test procedures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In survival analysis frailty is often used to model heterogeneity between individuals or correlation within clusters. Typically frailty is taken to be a continuous random effect, yielding a continuous mixture distribution for survival times. A Bayesian analysis of a correlated frailty model is discussed in the context of inverse Gaussian frailty. An MCMC approach is adopted and the deviance information criterion is used to compare models. As an illustration of the approach a bivariate data set of corneal graft survival times is analysed. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A wireless sensor network (WSN) is a group of sensors linked by wireless medium to perform distributed sensing tasks. WSNs have attracted a wide interest from academia and industry alike due to their diversity of applications, including home automation, smart environment, and emergency services, in various buildings. The primary goal of a WSN is to collect data sensed by sensors. These data are characteristic of being heavily noisy, exhibiting temporal and spatial correlation. In order to extract useful information from such data, as this paper will demonstrate, people need to utilise various techniques to analyse the data. Data mining is a process in which a wide spectrum of data analysis methods is used. It is applied in the paper to analyse data collected from WSNs monitoring an indoor environment in a building. A case study is given to demonstrate how data mining can be used to optimise the use of the office space in a building.