33 resultados para Packet Inter-arrival Time
Resumo:
A study was conducted to estimate variation among laboratories and between manual and automated techniques of measuring pressure on the resulting gas production profiles (GPP). Eight feeds (molassed sugarbeet feed, grass silage, maize silage, soyabean hulls, maize gluten feed, whole crop wheat silage, wheat, glucose) were milled to pass a I mm screen and sent to three laboratories (ADAS Nutritional Sciences Research Unit, UK; Institute of Grassland and Environmental Research (IGER), UK; Wageningen University, The Netherlands). Each laboratory measured GPP over 144 h using standardised procedures with manual pressure transducers (MPT) and automated pressure systems (APS). The APS at ADAS used a pressure transducer and bottles in a shaking water bath, while the APS at Wageningen and IGER used a pressure sensor and bottles held in a stationary rack. Apparent dry matter degradability (ADDM) was estimated at the end of the incubation. GPP were fitted to a modified Michaelis-Menten model assuming a single phase of gas production, and GPP were described in terms of the asymptotic volume of gas produced (A), the time to half A (B), the time of maximum gas production rate (t(RM) (gas)) and maximum gas production rate (R-M (gas)). There were effects (P<0.001) of substrate on all parameters. However, MPT produced more (P<0.001) gas, but with longer (P<0.001) B and t(RM gas) (P<0.05) and lower (P<0.001) R-M gas compared to APS. There was no difference between apparatus in ADDM estimates. Interactions occurred between substrate and apparatus, substrate and laboratory, and laboratory and apparatus. However, when mean values for MPT were regressed from the individual laboratories, relationships were good (i.e., adjusted R-2 = 0.827 or higher). Good relationships were also observed with APS, although they were weaker than for MPT (i.e., adjusted R-2 = 0.723 or higher). The relationships between mean MPT and mean APS data were also good (i.e., adjusted R 2 = 0. 844 or higher). Data suggest that, although laboratory and method of measuring pressure are sources of variation in GPP estimation, it should be possible using appropriate mathematical models to standardise data among laboratories so that data from one laboratory could be extrapolated to others. This would allow development of a database of GPP data from many diverse feeds. (c) 2005 Published by Elsevier B.V.
Resumo:
This conceptual paper aims to improve our understanding of how internationalised firms use outsourcing and offshoring strategies to manage knowledge and information through the life-cycle of integrated product-service solutions. More precisely, we identify the appropriate theoretical framework for this analysis and investigate through in-depth case studies how UK engineering firms organise, coordinate, and incentivise work that is executed in globally distributed teams. Our research focuses on their UK and India offices to study the organisation and governance of distributed teams. The research has several theoretical dimensions - organization; geography; time and knowledge - that it addresses as boundary challenges.
Classification of lactose and mandelic acid THz spectra using subspace and wavelet-packet algorithms
Resumo:
This work compares classification results of lactose, mandelic acid and dl-mandelic acid, obtained on the basis of their respective THz transients. The performance of three different pre-processing algorithms applied to the time-domain signatures obtained using a THz-transient spectrometer are contrasted by evaluating the classifier performance. A range of amplitudes of zero-mean white Gaussian noise are used to artificially degrade the signal-to-noise ratio of the time-domain signatures to generate the data sets that are presented to the classifier for both learning and validation purposes. This gradual degradation of interferograms by increasing the noise level is equivalent to performing measurements assuming a reduced integration time. Three signal processing algorithms were adopted for the evaluation of the complex insertion loss function of the samples under study; a) standard evaluation by ratioing the sample with the background spectra, b) a subspace identification algorithm and c) a novel wavelet-packet identification procedure. Within class and between class dispersion metrics are adopted for the three data sets. A discrimination metric evaluates how well the three classes can be distinguished within the frequency range 0. 1 - 1.0 THz using the above algorithms.
Resumo:
Dynamic relationships between technologies and organizations are investigated through research on digital visualization technologies and their use in the construction sector. Theoretical work highlights mutual adaptation between technologies and organizations but does not explain instances of sustained, sudden, or increasing maladaptation. By focusing on the technological field, I draw attention to hierarchical structuring around inter-dependent levels of technology; technological priorities of diverse groups; power asymmetries and disjunctures between contexts of development and use. For complex technologies, such as digital technologies, I argue these field-level features explain why organizations peripheral to the field may experience difficulty using emerging technology.
Resumo:
This paper concerns the switching on of two-dimensional time-harmonic scalar waves. We first review the switch-on problem for a point source in free space, then proceed to analyse the analogous problem for the diffraction of a plane wave by a half-line (the ‘Sommerfeld problem’), determining in both cases the conditions under which the field is well-approximated by the solution of the corresponding frequency domain problem. In both cases the rate of convergence to the frequency domain solution is found to be dependent on the strength of the singularity on the leading wavefront. In the case of plane wave diffraction at grazing incidence the frequency domain solution is immediately attained along the shadow boundary after the arrival of the leading wavefront. The case of non-grazing incidence is also considered.
Resumo:
PV only generates electricity during daylight hours and primarily generates over summer. In the UK, the carbon intensity of grid electricity is higher during the daytime and over winter. This work investigates whether the grid electricity displaced by PV is high or low carbon compared to the annual mean carbon intensity using carbon factors at higher temporal resolutions (half-hourly and daily). UK policy for carbon reporting requires savings to be calculated using the annual mean carbon intensity of grid electricity. This work offers an insight into whether this technique is appropriate. Using half hourly data on the generating plant supplying the grid from November 2008 to May 2010, carbon factors for grid electricity at half-hourly and daily resolution have been derived using technology specific generation emission factors. Applying these factors to generation data from PV systems installed on schools, it is possible to assess the variation in the carbon savings from displacing grid electricity with PV generation using carbon factors with different time resolutions. The data has been analyzed for a period of 363 to 370 days and so cannot account for inter-year variations in the relationship between PV generation and carbon intensity of the electricity grid. This analysis suggests that PV displaces more carbon intensive electricity using half-hourly carbon factors than using daily factors but less compared with annual ones. A similar methodology could provide useful insights on other variable renewable and demand-side technologies and in other countries where PV performance and grid behavior are different.
Resumo:
The time at which the signal of climate change emerges from the noise of natural climate variability (Time of Emergence, ToE) is a key variable for climate predictions and risk assessments. Here we present a methodology for estimating ToE for individual climate models, and use it to make maps of ToE for surface air temperature (SAT) based on the CMIP3 global climate models. Consistent with previous studies we show that the median ToE occurs several decades sooner in low latitudes, particularly in boreal summer, than in mid-latitudes. We also show that the median ToE in the Arctic occurs sooner in boreal winter than in boreal summer. A key new aspect of our study is that we quantify the uncertainty in ToE that arises not only from inter-model differences in the magnitude of the climate change signal, but also from large differences in the simulation of natural climate variability. The uncertainty in ToE is at least 30 years in the regions examined, and as much as 60 years in some regions. Alternative emissions scenarios lead to changes in both the median ToE (by a decade or more) and its uncertainty. The SRES B1 scenario is associated with a very large uncertainty in ToE in some regions. Our findings have important implications for climate modelling and climate policy which we discuss.
Resumo:
This paper examines one of the central issues in the formulation of a sector/regional real estate portfolio strategy, i.e. whether the means, standard deviations and correlations between the returns are sufficiently stable over time to justify using ex-post measures as proxies of the ex-ante portfolio inputs required for MPT. To investigate these issues this study conducts a number of tests of the inter-temporal stability of the total returns of the 19 sector/regions in the UK of the IPDMI. The results of the analysis reveal that the theoretical gains in sector and or regional diversification, found in previous work, could not have been readily achieved in practice without almost perfect foresight on the part of an investor as means, standard deviations and correlations, varied markedly from period to period.
Resumo:
Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL) and PREUDORESPONSE REGULATOR (PRR) gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF) genes. We molecularly describe the CMF (and related COL and PRR) gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare). Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ~200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken.
Resumo:
Abstract Background: The analysis of the Auditory Brainstem Response (ABR) is of fundamental importance to the investigation of the auditory system behaviour, though its interpretation has a subjective nature because of the manual process employed in its study and the clinical experience required for its analysis. When analysing the ABR, clinicians are often interested in the identification of ABR signal components referred to as Jewett waves. In particular, the detection and study of the time when these waves occur (i.e., the wave latency) is a practical tool for the diagnosis of disorders affecting the auditory system. Significant differences in inter-examiner results may lead to completely distinct clinical interpretations of the state of the auditory system. In this context, the aim of this research was to evaluate the inter-examiner agreement and variability in the manual classification of ABR. Methods: A total of 160 ABR data samples were collected, for four different stimulus intensity (80dBHL, 60dBHL, 40dBHL and 20dBHL), from 10 normal-hearing subjects (5 men and 5 women, from 20 to 52 years). Four examiners with expertise in the manual classification of ABR components participated in the study. The Bland-Altman statistical method was employed for the assessment of inter-examiner agreement and variability. The mean, standard deviation and error for the bias, which is the difference between examiners’ annotations, were estimated for each pair of examiners. Scatter plots and histograms were employed for data visualization and analysis. Results: In most comparisons the differences between examiner’s annotations were below 0.1 ms, which is clinically acceptable. In four cases, it was found a large error and standard deviation (>0.1 ms) that indicate the presence of outliers and thus, discrepancies between examiners. Conclusions: Our results quantify the inter-examiner agreement and variability of the manual analysis of ABR data, and they also allows for the determination of different patterns of manual ABR analysis.
Resumo:
The agility of inter-organizational process represents the ability of virtual enterprise to respond rapidly to the changing market environment. Many theories and methodologies about inter-organizational process have been developed but the dynamic agility has seldom been addressed. A virtual enterprise whose process has a high dynamic agility will be able to adjust with the changing environment in short time and low cost. This paper analyzes the agility of inter-organizational process from a dynamic perspective. Two indexes are proposed to evaluate the dynamic agility: time and cost. Furthermore, the method to measure the dynamic agility using simulation is studied. Finally, a case study is given to illustrate the method to measure the dynamic agility.
Resumo:
The discrete Fourier transmission spread OFDM DFTS-OFDM) based single-carrier frequency division multiple access (SC-FDMA) has been widely adopted due to its lower peak-to-average power ratio (PAPR) of transmit signals compared with OFDM. However, the offset modulation, which has lower PAPR than general modulation, cannot be directly applied into the existing SC-FDMA. When pulse-shaping filters are employed to further reduce the envelope fluctuation of transmit signals of SC-FDMA, the spectral efficiency degrades as well. In order to overcome such limitations of conventional SC-FDMA, this paper for the first time investigated cyclic prefixed OQAMOFDM (CP-OQAM-OFDM) based SC-FDMA transmission with adjustable user bandwidth and space-time coding. Firstly, we propose CP-OQAM-OFDM transmission with unequally-spaced subbands. We then apply it to SC-FDMA transmission and propose a SC-FDMA scheme with the following features: a) the transmit signal of each user is offset modulated single-carrier with frequency-domain pulse-shaping; b) the bandwidth of each user is adjustable; c) the spectral efficiency does not decrease with increasing roll-off factors. To combat both inter-symbolinterference and multiple access interference in frequencyselective fading channels, a joint linear minimum mean square error frequency domain equalization using a prior information with low complexity is developed. Subsequently, we construct space-time codes for the proposed SC-FDMA. Simulation results confirm the powerfulness of the proposed CP-OQAM-OFDM scheme (i.e., effective yet with low complexity).
Resumo:
Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for.
Resumo:
An efficient market incorporates news into prices immediately and fully. Tests for efficiency in financial markets have been undermined by information leakage. We test for efficiency in sports betting markets – real-world markets where news breaks remarkably cleanly. Applying a novel identification to high-frequency data, we investigate the reaction of prices to goals scored on the ‘cusp’ of half-time. This strategy allows us to separate the market's response to major news (a goal), from its reaction to the continual flow of minor game-time news. On our evidence, prices update swiftly and fully.
Resumo:
Model studies do not agree on future changes in tropical cyclone (TC) activity on regional scales. We aim to shed further light on the distribution, frequency, intensity, and seasonality of TCs that society can expect at the end of the twenty-first century in the Southern hemisphere (SH). Therefore, we investigate TC changes simulated by the atmospheric model ECHAM5 with T213 (~60 km) horizontal resolution. We identify TCs in present-day (20C; 1969–1990) and future (21C; 2069–2100) time slice simulations, using a tracking algorithm based on vorticity at 850 hPa. In contrast to the Northern hemisphere (NH), where tropical storm numbers reduce by 6 %, there is a more dramatic 22 % reduction in the SH, mainly in the South Indian Ocean. While an increase of static stability in 21C may partly explain the reduction in tropical storm numbers, stabilization cannot alone explain the larger SH drop. Large-scale circulation changes associated with a weakening of the Tropical Walker Circulation are hypothesized to cause the strong decrease of cyclones in the South Indian Ocean. In contrast the decrease found over the South Pacific appears to be partly related to increased vertical wind shear, which is possibly associated with an enhanced meridional sea surface temperature gradient. We find the main difference between the hemispheres in changes of the tropical cyclones of intermediate strength with an increase in the NH and a decrease in the SH. In both hemispheres the frequency of the strongest storms increases and the frequency of the weakest storms decreases, although the increase in SH intense storms is marginal.