72 resultados para POLYSTYRENE-BLOCK-POLY(ETHYLENE OXIDE) MICELLES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selective catalytic oxidation of alcohols over a mixture of copper(l) chloride and a number of linear 'linker-less' or 'branched' poly(ethylene glycol)-supported nitroxyl radicals of the 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) family as a catalyst system has been investigated in the presence of molecular oxygen in a batch reactor. It is found that the activity profile of the polymer-supported nitroxyl radicals is in good agreement with that of low-molecular weight nitroxyl catalysts, for example, allylic and benzylic alcohols are oxidised faster than aliphatic alcohols. The oxidations can be tuned to be highly selective such that aldehydes are the only oxidation products observed in the oxidation of primary alcohols and the oxidations of secondary alcohols yield the corresponding ketones. A strong structural effect of the polymeric nitroxyl species on catalytic activity that is dependent upon their spatial orientation of the nitroxyl radicals is particularly noted. The new soluble macromolecular catalysts can be recovered readily from the reaction mixture by solvent precipitation and filtration. In addition, the recycled catalysts demonstrate a similar selectivity with only a small decrease in activity compared to the fresh catalyst even after five repetitive cycles. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitroxyl radicals such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) are highly selective oxidation catalysts for the conversion of primary alcohols into the corresponding aldehydes. In this study, direct tethering of TEMPO units onto linear poly(ethylene glycol) (PEG) has afforded macromolecular catalysts that exhibit solubility in both aqueous and organic solvents. Recovery of the dissolved polymer-supported catalyst has been carried out by precipitation with a suitable solvent such as diethyl ether. The high catalyst activities and selectivities associated traditionally with nitroxyl-mediated oxidations of alcohols are retained by the series of "linker-less" linear PEG-TEMPO catalysts in which the TEMPO moiety is coupled directly to the PEG support. Although the selectivity remains unaltered, upon recycling of the linker-less polymer-supported catalysts, extended reaction times are required to maintain high yields of the desired carbonyl compounds. Alternatively, attachment of two nitroxyl radicals onto each functionalized PEG chain terminus via a 5-hydroxyisophthalic acid linker affords branched polymer-supported catalysts. In stark contrast to the linker-less catalysts, these branched nitroxyls exhibit catalytic activities up to five times greater than 4-methoxy-TEMPO alone under similar conditions. In addition, minimal decrease in catalytic activity is observed upon recycling of these branched macromolecular catalysts via solvent-induced precipitation. The high catalytic activities and preservation of activity upon recycling of these branched systems is attributed to enhanced regeneration of the nitroxyl species as a result of intramolecular syn-proportionation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequential crystallization of poly(L-lactide) (PLLA) followed by poly(epsilon-caprolactone) (PCL) in double crystalline PLLA-b-PCL diblock copolymers is studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). Three samples with different compositions are studied. The sample with the shortest PLLA block (32 wt.-% PLLA) crystallizes from a homogeneous melt, the other two (with 44 and 60% PLLA) from microphase separated structures. The microphase structure of the melt is changed as PLLA crystallizes at 122 degrees C (a temperature at which the PCL block is molten) forming spherulites regardless of composition, even with 32% PLLA. SAXS indicates that a lamellar structure with a different periodicity than that obtained in the melt forms (for melt segregated samples). Where PCL is the majority block, PCL crystallization at 42 degrees C following PLLA crystallization leads to rearrangement of the lamellar structure, as observed by SAXS, possibly due to local melting at the interphases between domains. POM results showed that PCL crystallizes within previously formed PLLA spherulites. WAXS data indicate that the PLLA unit cell is modified by crystallization of PCL, at least for the two majority PCL samples. The PCL minority sample did not crystallize at 42 degrees C (well below the PCL homopolymer crystallization temperature), pointing to the influence of pre-crystallization of PLLA on PCL crystallization, although it did crystallize at lower temperature. Crystallization kinetics were examined by DSC and WAXS, with good agreement in general. The crystallization rate of PLLA decreased with increase in PCL content in the copolymers. The crystallization rate of PCL decreased with increasing PLLA content. The Avrami exponents were in general depressed for both components in the block copolymers compared to the parent homopolymers. Polarized optical micrographs during isothermal crystalli zation of (a) homo-PLLA, (b) homo-PCL, (c) and (d) block copolymer after 30 min at 122 degrees C and after 15 min at 42 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Critical micelle concentrations (cmc) of aqueous solutions of poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) were determined at several temperatures by surface tensiometry. Below the lower critical solution temperature (LCST), the low Delta(mic) H-0 determined can be assigned to the PMMA block being tightly coiled in the dispersed molecular state, so that the unfavorable interactions of hydrophobic entities with water are minimized. Above the LCST the cmc value was found to increase; an anomalous behavior that can be directly related to the micelle-globule transition of the hydrophilic block. Interestingly, above the LCST the surface tension of relatively concentrated solutions was found to depend weakly on temperature not following the usual strong decrease with temperature expected for aqueous solutions. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphology in the solid state of a series of triblock copolymers comprising a poly(ethylene glycol) (PEG) midblock and symmetric poly(gamma-benzyl-L-glutamate) (PBLG) end blocks has been studied using X-ray scattering and microscopy techniques. Transmission electron microscopy (TEM) on samples selectively stained with uranyl acetate provided clear assignment of morphologies for as-cast and annealed samples. The thickness of both PEG and PBLG domains was in good agreement with calculations based on the conformations of the respective chains, allowing for the crystal or amorphous state of PEG and the a-helical or P-sheet structure of the PBLG. Atomic force microscopy provided complementary information on surface morphology for several samples that was in good agreement with the structure observed by TEM. A morphology diagram was constructed. Cylindrical structures were observed for ordered samples with low f(PBLG), whereas at higher f(PLBG) there was evidence for broken lamellar and "hockey puck" nanostructures. Regular lamellae were observed for intermediate compositions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report the formation of complexes by self-assembly of bovine serum albumin (BSA) with a poly(ethylene glycol) lipid conjugate (PEG(2000)-PE) in phosphate saline buffer solution (pH 7.4). Three different sets of samples have been studied. The BSA concentration remained fixed (1, 0.01, or 0.001 wt % BSA) within each set of samples, while the PEG(2000)-PE concentration was varied. Dynamic light scattering (DLS), rheology, and small-angle X-ray scattering (SAXS) were used to study samples with 1 wt % BSA. DLS showed that BSA/PEG(2000)-PE aggregates have a size intermediate between a BSA monomer and a PEG(2000)-PE micelle. Rheology suggested that BSA/PEG(2000)-PE complexes might be surrounded by a relatively compact PEG-lipid shell, while SAXS results showed that depletion forces do not take an important role in the stabilization of the complexes. Samples containing 0.01 wt % BSA were studied by circular dichroism (CD) and ultraviolet fluorescence spectroscopy (UV). UV results showed that at low concentrations of PEG-lipid, PEG(2000)-PE binds to tryptophan (Trp) groups in BSA, while at high concentrations of PEG-lipid the Trp groups are exposed to water. CD results showed that changes in Trp environment take place with a minimal variation of the BSA secondary structure elements. Finally, samples containing 0.001 wt % BSA were studied by zeta-potential experiments. Results showed that steric interactions might play an important role in the stabilization of the BSA/PEG(2000)-PE complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of ionic single-tailed surfactants to aqueous solutions of EO18BO10 [EO = poly(ethylene oxide), BO = poly(1,2-butylene oxide), subscripts denote the number of repeating units] leads to the formation of vesicles, as probed by laser scanning confocal microscopy. Dynamic light scattering showed that the dimensions of these aggregates at early stages of development do not depend on the sign of the surfactant head group charge. Small-angle X-ray scattering (SAXS) analysis indicated the coexistence of smaller micelles of different sizes and varying polymer content in solution. In strong contrast to the dramatic increase of size of dispersed particles induced by surfactants in dilute solution, the d-spacing of corresponding mesophases reduces monotonically upon increasing surfactant loading. This effect points to the suppression of vesicles as a consequence of increasing ionic strength in concentrated solutions. Maximum enhancements of storage modulus and thermal stability of hybrid gels take place at different compositions, indicating a delicate balance between the number and size of polymer-poor aggregates (population increases with surfactant loading) and the number and size of polymer−surfactant complexes (number and size decrease in high surfactant concentrations).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges oil larger units in the polymer chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copolycondensation of N,N′-bis(2-hydroxyethyl)-biphenyl-3,4,3′,4′-tetracarboxylic diimide (5–25 mol %) with bis(2-hydroxyethyl)-2,6-naphthalate affords a series of cocrystalline, poly(ethylene 2,6-naphthalate) (PEN)-based poly(ester imide)s. The glass transition temperature rises with the level of comonomer, from 118 °C for PEN itself to 148 °C for the 25% diimide copolymer. X-ray powder and fiber diffraction studies show that, when 5 mol % or more of diimide is present, the α-PEN crystal structure is replaced by a new crystalline phase arising from isomorphic substitution of biphenyldiimide for PEN residues in the polymer crystal lattice. This new phase is provisionally identified as monoclinic, C2/m, with two chains per unit cell, a = 10.56, b = 6.74, c = 13.25 Å, and β = 143.0°.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tethered films of polystyrene-block-poly(methyl methacrylate) copolymers of varying composition and molecular weight were investigated using atomic force microscopy and the observed structures compared with theoretical predictions. Although the experimental results were in qualitative agreement with the theory, there was significant quantitative variation. This was attributed to the presence of solvent in the films prior to and during annealing, a hypothesis supported by new preliminary calculations reported here. Solvent exchange experiments (where a good solvent for both polymer blocks was gradually replaced by a selective solvent), were also performed on the films. This procedure generated textured films in which the structure was defined by miscibility of the polymer blocks with the second solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The confined crystallization of poly(ethylene oxide) (PEO) in predominantly spherical microdomains formed by several diblock copolymers was studied and compared. Two polybutadiene-b-poly(ethylene oxide) diblock copolymers were prepared by sequential anionic polymerization (with approximately 90 and 80 wt % polybutadiene (PB)). These were compared to equivalent samples after catalytic hydrogenation that produced double crystalline polyethylene-b-poly(ethylene oxide) diblock copolymers. Both systems are segregated into microdomains as indicated by small-angle X-ray scattering (SAXS) experiments performed in the melt and at lower temperatures. However, the PB-b-PEO systems exhibited a higher degree of order in the melt. A predominantly spherical morphology of PEO in a PB or a PE matrix was observed by both SAXS and transmission electron microscopy, although a possibly mixed morphology (spheres and cylinders) was formed when the PEO composition was close to the cylinder-sphere domain transitional composition as indicated by SAXS. Differential scanning calorimetry experiments showed that a fractionated crystallization process for the PEO occurred in all samples, indicating that the PE cannot nucleate PEO in these diblock copolymers. A novel result was the observation of a subsequent fractionated melting that reflected the crystallization process. Sequential isothermal crystallization experiments allowed us to thermally separate at least three different crystallization and melting peaks for the PEO microdomains. The lowest melting point fraction was the most important in terms of quantity and corresponded to the crystallization of isolated PEO spheres (or cylinders) that were either superficially or homogeneously nucleated. This was confirmed by Avrami index values of approximately 1. The isothermal crystallization results indicate that the PE matrix restricts the crystallization of the covalently bonded PEO to a higher degree compared to PB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A particulate microemulsion is generated in a simple two-component system comprising an amphiphilic copolymer (Pluronic P123) in mixtures with tannic acid. This is correlated to complexation between the poly(ethylene oxide) in the Pluronic copolymer and the multiple hydrogen bonding units in tannic acid which leads to the breakup of the ordered structure formed in gels of Pluronic copolymers, and the formation of dispersed nanospheres containing a bicontinuous internal structure. These novel nanoparticles termed ‘‘emulsomes’’ are self-stabilized by a coating layer of Pluronic copolymer. The microemulsion exhibits a pearlescent appearance due to selective light scattering from the emulsion droplets. This simple formulation based on a commercial copolymer and a biofunctional and biodegradable additive is expected to find applications in the fast moving consumer goods sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase behavior of grafted d-polystyrene-block-poly(methyl methacrylate) diblock copolymer films is examined, with particular focus on the effect of solvent and annealing time. It was observed that the films undergo a two-step transformation from an initially disordered state, through an ordered metastable state, to the final equilibrium configuration. It was also found that altering the solvent used to wash the films, or complete removal of the solvent prior to thermal annealing using supercritical CO2, could influence the structure of the films in the metastable state, though the final equilibrium state was unaffected. To aid in the understanding to these experimental results, a series of self-consistent field theory calculations were done on a model diblock copolymer brush containing solvent. Of the different models examined, those which contained a solvent selective for the grafted polymer block most accurately matched the observed experimental behavior. We hypothesize that the structure of the films in the metastable state results from solvent enrichment of the film near the film/substrate interface in the case of films washed with solvent or faster relaxation of the nongrafted block for supercritical CO2 treated (solvent free) films. The persistence of the metastable structures was attributed to the slow reorganization of the polymer chains in the absence of solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(Nvinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.