46 resultados para POLYIMIDE OLIGOMERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Push-pull nonlinear optical (NLO) chromophores containing thiazole and benzothiazole acceptors were synthesized and characterized. Using these chromophores a series of second-order NLO polyimides were Successfully prepared from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), pyromellitic dianhydride (PMDA) and 3,3'4,4'-benzophenone tetracarboxylic dianhydride (BTDA) by a standard condensation polymerization technique. These polyimides exhibit high glass transition temperatures ranging from 160 to 188 degrees C. UV-vis spectrum of polyimide exhibited a slight blue shift and decreases in absorption due to birefringence. From the order parameters, it was found that chromophores were aligned effectively. Using in situ poling and temperature ramping technique, the optical temperatures for corona poling were obtained. It was found that the optimal temperatures of polyimides approach their glass transition temperatures. These polyimides demonstrate relatively large d(33) values range between 35.15 and 45.20 pm/V at 532 nm. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An elastomeric, supramolecular healable polymer blend, comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl endgroups, is compatibilised by aromatic π−π stacking between the π-electron-deficient diimide groups and the π-electron-rich pyrenyl units. This inter-polymer interaction is key to forming a tough, healable, elastomeric material. Variable temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the π–π stacking interactions. Variable temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology, and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monomer-sequence information in synthetic copolyimides can be recognised by tweezer-type molecules binding to adjacent triplet-sequences on the polymer chains. In the present paper different tweezer-molecules are found to have different sequence-selectivities, as demonstrated in solution by 1H NMR spectroscopy and in the solid state by single crystal X-ray analyses of tweezer-complexes with linear and macrocyclic oligo-imides. This work provides clear-cut confirmation of polyimide chain-folding and adjacent-tweezer-binding. It also reveals a new and entirely unexpected mechanism for sequence-recognition which, by analogy with a related process in biomolecular information processing, may be termed "frameshift-reading". The ability of one particular tweezer-molecule to detect, with exceptionally high sensitivity, long-range sequence-information in chain-folding aromatic copolyimides, is readily explained by this novel process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular uptake of PMOs (phosphorodiamidate morpholino oligomers) can be enhanced by their conjugation to arginine-rich CPPs (cell-penetrating peptides). Here, we discuss our recent findings regarding (R-Ahx-R)(4)AhxB (Ahx is 6-aminohexanoic acid and B is beta-alanine) CPP-PMO conjugates in DMD (Duchenne muscular dystrophy) and murine coronavirus research. An (R-Ahx-R)(4)AhxB-PMO conjugate was the most effective compound in inducing the correction of mutant dystrophin transcripts in myoblasts derived from a canine model of DMD. Similarly, normal levels of dystrophin expression were restored in the diaphragms of mdx mice, with treatment starting at the neonatal stage, and protein was still detecTable 22 weeks after the last dose of an (R-Ahx-R)(4)AhxB-PMO conjugate. Effects of length, linkage and carbohydrate modification of this CPP on the delivery of a PMO were investigated in a coronavirus mouse model. An (R-Ahx-R)(4)AhxB-PMO conjugate effectively inhibited viral replication, in comparison with other peptides conjugated to the same PMO. Shortening the CPP length, modifying it with a mannosylated serine moiety or replacing it with the R(9)F(2) CPP significantly decreased the efficacy of the resulting PPMO (CPP-PMO conjugate). We attribute the success of this CPP to its stability in serum and its capacity to transport PMO to RNA targets in a manner superior to that of poly-arginine CPPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caliciviruses are a major cause of gastroenteritis in humans and cause a wide variety of other diseases in animals. Here, the characterization of protein-protein interactions between the individual proteins of Feline calicivirus (FCV), a model system for other members of the family Caliciviridae, is reported. Using the yeast two-hybrid system combined with a number of other approaches, it is demonstrated that the p32 protein (the picornavirus 2B analogue) of FCV interacts with p39 (2C), p30 (3A) and p76 (3CD). The FCV protease/RNA polymerase (ProPol) p76 was found to form homo-oligomers, as well as to interact with VPg and ORF2, the region encoding the major capsid protein VP1. A weak interaction was also observed between p76 and the minor capsid protein encoded by ORF3 (VP2). ORF2 protein was found to interact with VPg, p76 and VP2. The potential roles of the interactions in calicivirus replication are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The D 2 dopamine receptor exists as dimers or as higher-order oligomers, as determined from data from physical experiments. In this study, we sought evidence that this oligomerization leads to cooperativity by examining the binding of three radioligands ([H-3] nemonapride, [H-3] raclopride, and [H-3] spiperone) to D 2 dopamine receptors expressed in membranes of Sf9 cells. In saturation binding experiments, the three radioligands exhibited different B-max values, and the B-max values could be altered by the addition of sodium ions to assays. Despite labeling different numbers of sites, the different ligands were able to achieve full inhibition in competition experiments. Some ligand pairs also exhibited complex inhibition curves in these experiments. In radioligand dissociation experiments, the rate of dissociation of [H-3] nemonapride or [H-3] spiperone depended on the sodium ion concentration but was independent of the competing ligand. Although some of the data in this study are consistent with the behavior of a cooperative oligomeric receptor, not all of the data are in agreement with this model. It may, therefore, be necessary to consider more complex models for the behavior of this receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human D-2Long (D-2L) and D-2Short (D-2S) dopamine receptor isoforms were modified at their N-terminus by the addition of a human immunodeficiency virus (HIV) or a FLAG epitope tag. The receptors were then expressed in Spodoptera frugiperda 9 (Sf9) cells using the baculovirus system, and their oligomerization was investigated by means of co-immunoprecipitation and time-resolved fluorescence resonance energy transfer (FRET). [H-3] Spiperone labelled D-2 receptors in membranes prepared from Sf9 cells expressing epitope-tagged D-2L or D-2S receptors, with a pK(d) value of approximate to 10. Co-immunoprecipitation using antibodies specific for the tags showed constitutive homo-oligomerization of D-2L and D-2S receptors in Sf9 cells. When the FLAG-tagged D-2S and HIV-tagged D-2L receptors were co-expressed, co-immunoprecipitation showed that the two isoforms can also form hetero-oligomers in Sf9 cells. Time-resolved FRET with europium and XL665-labelled antibodies was applied to whole Sf9 cells and to membranes from Sf9 cells expressing epitope-tagged D-2 receptors. In both cases, constitutive homo-oligomers were revealed for D-2L and D-2S isoforms. Time-resolved FRET also revealed constitutive homo-oligomers in HEK293 cells expressing FLAG-tagged D-2S receptors. The D-2 receptor ligands dopamine, R-(-) propylnorapomorphine, and raclopride did not affect oligomerization of D-2L and D-2S in Sf9 and HEK293 cells. Human D-2 dopamine receptors can therefore form constitutive oligomers in Sf9 cells and in HEK293 cells that can be detected by different approaches, and D-2 oligomerization in these cells is not regulated by ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent biochemical studies have identified high molecular complexes of the HIV Gag precursor in the cytosol of infected cells. Using immunoelectron microscopy we studied the time course of the synthesis and assembly of a HIV Gag precursor protein (pr55gag) in Sf9 cells infected with recombinant baculovirus expressing the HIV gag gene. We also immunolabeled for pr55gag human T4 cells acutely or chronically infected with HIV-1. In Sf9 cells, the time course study showed that the first Gag protein appeared in the cytoplasm at 28-30 h p.i. and that budding started 6-8 h later. Colloidal gold particles, used to visualize the Gag protein, were first scattered randomly throughout the cytoplasm, but soon clusters representing 100 to 1000 copies of pr55gag were also observed. By contrast, in cells with budding or released virus-like particles the cytoplasm was virtually free of gold particles while the released virus-like particles were heavily labeled. Statistical analysis showed that between 80 and 90% of the gold particles in the cytoplasm were seen as singles, as doublets, or in small groups of up to five particles probably representing small oligomers. Clusters of gold particles were also observed in acutely infected lymphocytes as well as in multinuclear cells of chronically infected cultures of T4 cells. In a few cases small aggregates of gold particles were found in the nuclei of T4 lymphocytes. These observations suggest that the Gag polyprotein forms small oligomers in the cytoplasm of expressing cells but that assembly into multimeric complexes takes place predominantly at the plasma membrane. Large accumulations of Gag protein in the cytoplasm may represent misfolded molecules destined for degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photochemistry of 1,1-dimethyl- and 1,1,3,4-tetramethylstannacyclopent-3-ene (4a and 4b,respectively) has been studied in the gas phase and in hexane solution by steady-state and 193-nm laser flash photolysis methods. Photolysis of the two compounds results in the formation of 1,3-butadiene (from 4a) and 2,3-dimethyl-1,3-butadiene (from 4b) as the major products, suggesting that cycloreversion to yield dimethylstannylene (SnMe2) is the main photodecomposition pathway of these molecules. Indeed, the stannylene has been trapped as the Sn-H insertion product upon photolysis of 4a in hexane containing trimethylstannane. Flash photolysis of 4a in the gas phase affords a transient absorbing in the 450-520nm range that is assigned to SnMe2 by comparison of its spectrum and reactivity to those previously reported from other precursors. Flash photolysis of 4b in hexane solution affords results consistent with the initial formation of SnMe2 (lambda(max) approximate to 500 nm), which decays over similar to 10 mu s to form tetramethyldistannene (5b; lambda(max) approximate to 470 nm). The distannene decays over the next ca. 50 mu s to form at least two other longer-lived species, which are assigned to higher SnMe2 oligomers. Time-dependent DFT calculations support the spectral assignments for SnMe2 and Sn2Me4, and calculations examining the variation in bond dissociation energy with substituent (H, Me, and Ph) in disilenes, digermenes, and distannenes rule out the possibility that dimerization of SnMe2 proceeds reversibly. Addition of methanol leads to reversible reaction with SnMe2 to form a transient absorbing at lambda(max) approximate to 360 nm, which is assigned to the Lewis acid-base complex between SnMe2 and the alcohol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blends of the poly(ether sulfone) derived from 4,4'-biphenol and 4,4'-dichlorodiphenylsulfone (Radel-R(TM)) with its homologous macrocyclic oligomers show greatly lowered melt viscosities relative to that of the parent polymer, potentially enabling more facile production and fabrication of fiber-reinforced composite materials. The macrocycles can then undergo entropically driven ring-opening polymerization in situ. The required blends can be obtained easily in one step, by carrying out polycondensations at concentrations lower than those usually used for polymer synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel supramolecular polymer system, in which the terminal pyrenyl groups of a polyamide intercalate into the chain-folds of a polyimide via electronically-complementary pi-pi stacking, shows both enhanced mechanical properties relative to those of its individual components and facile healing characteristics as a result of the thermoreversibility of non-covalent interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel type of tweezer molecule containing electron-rich 2-pyrenyloxy arms has been designed to exploit intramolecular hydrogen bonding in stabilising a preferred conformation for supramolecular complexation to complementary sequences in aromatic copolyimides. This tweezer-conformation is demonstrated by single-crystal X-ray analyses of the tweezer molecule itself and of its complex with an aromatic diimide model-compound. In terms of its ability to bind selectively to polyimide chains, the new tweezer molecule shows very high sensitivity to sequence effects. Thus, even low concentrations of tweezer relative to diimide units (<2.5 mol%) are sufficient to produce dramatic, sequence-related splittings of the pyromellitimide proton NMR resonances. These induced resonance-shifts arise from ring-current shielding of pyromellitimide protons by the pyrenyloxy arms of the tweezer-molecule, and the magnitude of such shielding is a function of the tweezer-binding constant for any particular monomer sequence. Recognition of both short-range and long-range sequences is observed, the latter arising from cumulative ring-current shielding of diimide protons by tweezer molecules binding at multiple adjacent sites on the copolymer chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly strained macrocyclic ether-ketones obtained by nickel-catalyzed cyclization of linear precursor oligomers undergo ring-opening polyinerization via ether exchange in the presence of nucleophilic initiators such as fluoride or phenoxide anions. Strain enthapies of these macrocycles, from DSC analyses of their exothermic ring-opening polymerization are in the range 50-90 kJ mol(-1). Melt-phase polymerization generally affords slightly cross-linked materials, but solution-phase polymerization at high macrocycle concentrations gives fully soluble, high molar mass polymers with inherent viscosities of up to 1.78 dL g(-1). Sequence-analysis of the resulting polymers by C-13 NMR shows that alternating or random monomer sequences may be obtained, depending on whether one or both aromatic rings adjacent to the ether linkages are activated toward nucleophilic attack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymerizable macrocyclic biarylene-ether-ketones and biarylene-ether-sulfones are accessible from linear, bis(chloro)-terminated oligomers via nickel-catalyzed, intramolecular coupling under pseudo-high-dilution conditions. Single-crystal X-ray analyses of the resulting cyclo-oligomers reveal extremely distorted and highly strained geometries, with 4,4 '-biphenylene units showing deviations of up to 70 degrees from linearity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalyst-doped sodium aluminum hydrides have been intensively studied as solid hydrogen carriers for onboard proton-exchange membrane (PEM) fuel cells. Although the importance of catalyst choice in enhancing kinetics for both hydrogen uptake and release of this hydride material has long been recognized, the nature of the active species and the mechanism of catalytic action are unclear. We have shown by inelastic neutron scattering (INS) spectroscopy that a volatile molecular aluminum hydride is formed during the early stage of H-2 re-eneration of a depleted, catalyst-doped sodium aluminum hydride. Computational modeling of the INS spectra suggested the formation of AlH3 and oligomers (AlH3)(n) (Al2H6, Al3H9, and Al4H12 clusters), which are pertinent to the mechanism of hydrogen storage. This paper demonstrates, for the first time, the existence of these volatile species.