41 resultados para POISSON REGRESSION APPROACH
Resumo:
None of the current surveillance streams monitoring the presence of scrapie in Great Britain provide a comprehensive and unbiased estimate of the prevalence of the disease at the holding level. Previous work to estimate the under-ascertainment adjusted prevalence of scrapie in Great Britain applied multiple-list capture–recapture methods. The enforcement of new control measures on scrapie-affected holdings in 2004 has stopped the overlapping between surveillance sources and, hence, the application of multiple-list capture–recapture models. Alternative methods, still under the capture–recapture methodology, relying on repeated entries in one single list have been suggested in these situations. In this article, we apply one-list capture–recapture approaches to data held on the Scrapie Notifications Database to estimate the undetected population of scrapie-affected holdings with clinical disease in Great Britain for the years 2002, 2003, and 2004. For doing so, we develop a new diagnostic tool for indication of heterogeneity as well as a new understanding of the Zelterman and Chao’s lower bound estimators to account for potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a special, locally truncated Poisson likelihood equivalent to a binomial likelihood. This understanding allows the extension of the Zelterman approach by means of logistic regression to include observed heterogeneity in the form of covariates—in case studied here, the holding size and country of origin. Our results confirm the presence of substantial unobserved heterogeneity supporting the application of our two estimators. The total scrapie-affected holding population in Great Britain is around 300 holdings per year. None of the covariates appear to inform the model significantly.
Resumo:
To improve the welfare of the rural poor and keep them in the countryside, the government of Botswana has been spending 40% of the value of agricultural GDP on agricultural support services. But can investment make smallholder agriculture prosperous in such adverse conditions? This paper derives an answer by applying a two-output six-input stochastic translog distance function, with inefficiency effects and biased technical change to panel data for the 18 districts and the commercial agricultural sector, from 1979 to 1996 This model demonstrates that herds are the most important input, followed by draft power. land and seeds. Multilateral indices for technical change, technical efficiency and total factor productivity (TFP) show that the technology level of the commercial agricultural sector is more than six times that of traditional agriculture and that the gap has been increasing, due to technological regression in traditional agriculture and modest progress in commercial agriculture. Since the levels of efficiency are similar, the same patient is repeated by the TFP indices. This result highlights the policy dilemma of the trade-off between efficiency and equity objectives.
Resumo:
This study presents a new simple approach for combining empirical with raw (i.e., not bias corrected) coupled model ensemble forecasts in order to make more skillful interval forecasts of ENSO. A Bayesian normal model has been used to combine empirical and raw coupled model December SST Niño-3.4 index forecasts started at the end of the preceding July (5-month lead time). The empirical forecasts were obtained by linear regression between December and the preceding July Niño-3.4 index values over the period 1950–2001. Coupled model ensemble forecasts for the period 1987–99 were provided by ECMWF, as part of the Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction (DEMETER) project. Empirical and raw coupled model ensemble forecasts alone have similar mean absolute error forecast skill score, compared to climatological forecasts, of around 50% over the period 1987–99. The combined forecast gives an increased skill score of 74% and provides a well-calibrated and reliable estimate of forecast uncertainty.
Resumo:
OBJECTIVES: This contribution provides a unifying concept for meta-analysis integrating the handling of unobserved heterogeneity, study covariates, publication bias and study quality. It is important to consider these issues simultaneously to avoid the occurrence of artifacts, and a method for doing so is suggested here. METHODS: The approach is based upon the meta-likelihood in combination with a general linear nonparametric mixed model, which lays the ground for all inferential conclusions suggested here. RESULTS: The concept is illustrated at hand of a meta-analysis investigating the relationship of hormone replacement therapy and breast cancer. The phenomenon of interest has been investigated in many studies for a considerable time and different results were reported. In 1992 a meta-analysis by Sillero-Arenas et al. concluded a small, but significant overall effect of 1.06 on the relative risk scale. Using the meta-likelihood approach it is demonstrated here that this meta-analysis is due to considerable unobserved heterogeneity. Furthermore, it is shown that new methods are available to model this heterogeneity successfully. It is argued further to include available study covariates to explain this heterogeneity in the meta-analysis at hand. CONCLUSIONS: The topic of HRT and breast cancer has again very recently become an issue of public debate, when results of a large trial investigating the health effects of hormone replacement therapy were published indicating an increased risk for breast cancer (risk ratio of 1.26). Using an adequate regression model in the previously published meta-analysis an adjusted estimate of effect of 1.14 can be given which is considerably higher than the one published in the meta-analysis of Sillero-Arenas et al. In summary, it is hoped that the method suggested here contributes further to a good meta-analytic practice in public health and clinical disciplines.
Resumo:
None of the current surveillance streams monitoring the presence of scrapie in Great Britain provide a comprehensive and unbiased estimate of the prevalence of the disease at the holding level. Previous work to estimate the under-ascertainment adjusted prevalence of scrapie in Great Britain applied multiple-list capture-recapture methods. The enforcement of new control measures on scrapie-affected holdings in 2004 has stopped the overlapping between surveillance sources and, hence, the application of multiple-list capture-recapture models. Alternative methods, still under the capture-recapture methodology, relying on repeated entries in one single list have been suggested in these situations. In this article, we apply one-list capture-recapture approaches to data held on the Scrapie Notifications Database to estimate the undetected population of scrapie-affected holdings with clinical disease in Great Britain for the years 2002, 2003, and 2004. For doing so, we develop a new diagnostic tool for indication of heterogeneity as well as a new understanding of the Zelterman and Chao's lower bound estimators to account for potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a special, locally truncated Poisson likelihood equivalent to a binomial likelihood. This understanding allows the extension of the Zelterman approach by means of logistic regression to include observed heterogeneity in the form of covariates-in case studied here, the holding size and country of origin. Our results confirm the presence of substantial unobserved heterogeneity supporting the application of our two estimators. The total scrapie-affected holding population in Great Britain is around 300 holdings per year. None of the covariates appear to inform the model significantly.
Resumo:
Estimation of population size with missing zero-class is an important problem that is encountered in epidemiological assessment studies. Fitting a Poisson model to the observed data by the method of maximum likelihood and estimation of the population size based on this fit is an approach that has been widely used for this purpose. In practice, however, the Poisson assumption is seldom satisfied. Zelterman (1988) has proposed a robust estimator for unclustered data that works well in a wide class of distributions applicable for count data. In the work presented here, we extend this estimator to clustered data. The estimator requires fitting a zero-truncated homogeneous Poisson model by maximum likelihood and thereby using a Horvitz-Thompson estimator of population size. This was found to work well, when the data follow the hypothesized homogeneous Poisson model. However, when the true distribution deviates from the hypothesized model, the population size was found to be underestimated. In the search of a more robust estimator, we focused on three models that use all clusters with exactly one case, those clusters with exactly two cases and those with exactly three cases to estimate the probability of the zero-class and thereby use data collected on all the clusters in the Horvitz-Thompson estimator of population size. Loss in efficiency associated with gain in robustness was examined based on a simulation study. As a trade-off between gain in robustness and loss in efficiency, the model that uses data collected on clusters with at most three cases to estimate the probability of the zero-class was found to be preferred in general. In applications, we recommend obtaining estimates from all three models and making a choice considering the estimates from the three models, robustness and the loss in efficiency. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
Objectives: To assess the potential source of variation that surgeon may add to patient outcome in a clinical trial of surgical procedures. Methods: Two large (n = 1380) parallel multicentre randomized surgical trials were undertaken to compare laparoscopically assisted hysterectomy with conventional methods of abdominal and vaginal hysterectomy; involving 43 surgeons. The primary end point of the trial was the occurrence of at least one major complication. Patients were nested within surgeons giving the data set a hierarchical structure. A total of 10% of patients had at least one major complication, that is, a sparse binary outcome variable. A linear mixed logistic regression model (with logit link function) was used to model the probability of a major complication, with surgeon fitted as a random effect. Models were fitted using the method of maximum likelihood in SAS((R)). Results: There were many convergence problems. These were resolved using a variety of approaches including; treating all effects as fixed for the initial model building; modelling the variance of a parameter on a logarithmic scale and centring of continuous covariates. The initial model building process indicated no significant 'type of operation' across surgeon interaction effect in either trial, the 'type of operation' term was highly significant in the abdominal trial, and the 'surgeon' term was not significant in either trial. Conclusions: The analysis did not find a surgeon effect but it is difficult to conclude that there was not a difference between surgeons. The statistical test may have lacked sufficient power, the variance estimates were small with large standard errors, indicating that the precision of the variance estimates may be questionable.
Resumo:
Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward constrained regression manner. The leave-one-out (LOO) test score is used for kernel selection. The jackknife parameter estimator subject to positivity constraint check is used for the parameter estimation of a single parameter at each forward step. As such the proposed approach is simple to implement and the associated computational cost is very low. An illustrative example is employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to that of the classical Parzen window estimate.
Resumo:
A unified approach is proposed for sparse kernel data modelling that includes regression and classification as well as probability density function estimation. The orthogonal-least-squares forward selection method based on the leave-one-out test criteria is presented within this unified data-modelling framework to construct sparse kernel models that generalise well. Examples from regression, classification and density estimation applications are used to illustrate the effectiveness of this generic sparse kernel data modelling approach.
Resumo:
Using the classical Parzen window estimate as the target function, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density estimates. The proposed algorithm incrementally minimises a leave-one-out test error score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights are finally updated using the multiplicative nonnegative quadratic programming algorithm, which has the ability to reduce the model size further. Except for the kernel width, the proposed algorithm has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Two examples are used to demonstrate the ability of this regression-based approach to effectively construct a sparse kernel density estimate with comparable accuracy to that of the full-sample optimised Parzen window density estimate.
Resumo:
Using the classical Parzen window (PW) estimate as the desired response, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density (SKD) estimates. The proposed algorithm incrementally minimises a leave-one-out test score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights of the selected sparse model are finally updated using the multiplicative nonnegative quadratic programming algorithm, which ensures the nonnegative and unity constraints for the kernel weights and has the desired ability to reduce the model size further. Except for the kernel width, the proposed method has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Several examples demonstrate the ability of this simple regression-based approach to effectively construct a SKID estimate with comparable accuracy to that of the full-sample optimised PW density estimate. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The paper introduces an efficient construction algorithm for obtaining sparse linear-in-the-weights regression models based on an approach of directly optimizing model generalization capability. This is achieved by utilizing the delete-1 cross validation concept and the associated leave-one-out test error also known as the predicted residual sums of squares (PRESS) statistic, without resorting to any other validation data set for model evaluation in the model construction process. Computational efficiency is ensured using an orthogonal forward regression, but the algorithm incrementally minimizes the PRESS statistic instead of the usual sum of the squared training errors. A local regularization method can naturally be incorporated into the model selection procedure to further enforce model sparsity. The proposed algorithm is fully automatic, and the user is not required to specify any criterion to terminate the model construction procedure. Comparisons with some of the existing state-of-art modeling methods are given, and several examples are included to demonstrate the ability of the proposed algorithm to effectively construct sparse models that generalize well.
Resumo:
An efficient model identification algorithm for a large class of linear-in-the-parameters models is introduced that simultaneously optimises the model approximation ability, sparsity and robustness. The derived model parameters in each forward regression step are initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning algorithm based on the basis pursuit that minimises the l(1) norm of the parameter estimate vector. The model subset selection cost function includes a D-optimality design criterion that maximises the determinant of the design matrix of the subset to ensure model robustness and to enable the model selection procedure to automatically terminate at a sparse model. The proposed approach is based on the forward OLS algorithm using the modified Gram-Schmidt procedure. Both the parameter tuning procedure, based on basis pursuit, and the model selection criterion, based on the D-optimality that is effective in ensuring model robustness, are integrated with the forward regression. As a consequence the inherent computational efficiency associated with the conventional forward OLS approach is maintained in the proposed algorithm. Examples demonstrate the effectiveness of the new approach.
Resumo:
This correspondence introduces a new orthogonal forward regression (OFR) model identification algorithm using D-optimality for model structure selection and is based on an M-estimators of parameter estimates. M-estimator is a classical robust parameter estimation technique to tackle bad data conditions such as outliers. Computationally, The M-estimator can be derived using an iterative reweighted least squares (IRLS) algorithm. D-optimality is a model structure robustness criterion in experimental design to tackle ill-conditioning in model Structure. The orthogonal forward regression (OFR), often based on the modified Gram-Schmidt procedure, is an efficient method incorporating structure selection and parameter estimation simultaneously. The basic idea of the proposed approach is to incorporate an IRLS inner loop into the modified Gram-Schmidt procedure. In this manner, the OFR algorithm for parsimonious model structure determination is extended to bad data conditions with improved performance via the derivation of parameter M-estimators with inherent robustness to outliers. Numerical examples are included to demonstrate the effectiveness of the proposed algorithm.
Resumo:
Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward-constrained regression (FCR) manner. The proposed algorithm selects significant kernels one at a time, while the leave-one-out (LOO) test score is minimized subject to a simple positivity constraint in each forward stage. The model parameter estimation in each forward stage is simply the solution of jackknife parameter estimator for a single parameter, subject to the same positivity constraint check. For each selected kernels, the associated kernel width is updated via the Gauss-Newton method with the model parameter estimate fixed. The proposed approach is simple to implement and the associated computational cost is very low. Numerical examples are employed to demonstrate the efficacy of the proposed approach.