46 resultados para PHOSPHOLIPID-BILAYERS
Resumo:
Regulation of reactive oxygen species and cytosolic free calcium ([Ca2+](cyt)) is central to plant function. Annexins are small proteins capable of Ca2+-dependent membrane binding or membrane insertion. They possess structural motifs that could support both peroxidase activity and calcium transport. Here, a Zea mays annexin preparation caused increases in [Ca2+] cyt when added to protoplasts of Arabidopsis thaliana roots expressing aequorin. The pharmacological profile was consistent with annexin activation (at the extracellular plasma membrane face) of Arabidopsis Ca2+-permeable nonselective cation channels. Secreted annexins could therefore modulate Ca2+ influx. As maize annexins occur in the cytosol and plasma membrane, they were incorporated at the intracellular face of lipid bilayers designed to mimic the plasma membrane. Here, they generated an instantaneously activating Ca2+-permeable conductance at mildly acidic pH that was sensitive to verapamil and Gd3+ and had a Ca2+-to-K+ permeability ratio of 0.36. These results suggest that cytosolic annexins create a Ca2+ influx pathway directly, particularly during stress responses involving acidosis. A maize annexin preparation also demonstrated in vitro peroxidase activity that appeared independent of heme association. In conclusion, this study has demonstrated that plant annexins create Ca2+-permeable transport pathways, regulate [Ca2+] cyt, and may function as peroxidases in vitro.
Resumo:
We previously identified the function of the hepatitis C virus (HCV) p7 protein as an ion channel in artificial lipid bilayers and demonstrated that this in vitro activity is inhibited by amantadine. Here we show that the ion channel activity of HCV p7 expressed in mammalian cells can substitute for that of influenza virus M2 in a cell-based assay. This was also the case for the p7 from the related virus, bovine viral diarrhoea virus (BVDV). Moreover, amantadine was shown to abrogate HCV p7 function in this assay at a concentration that specifically inhibits M2. Mutation of a conserved basic loop located between the two predicted trans-membrane alpha helices rendered HCV p7 non-functional as an ion channel. The intracellular localization of p7 was unaffected by this mutation and was found to overlap significantly with membranes associated with mitochondria. Demonstration of p7 ion channel activity in cellular membranes and its inhibition by amantadine affirm the protein as a target for future anti-viral chemotherapy.
Resumo:
Human selenium (Se) requirements are currently based on biochemical markers of Se status. In rats, tissue glutathione peroxidase-1 (Gpx1) mRNA levels can be used effectively to determine Se requirements; blood Gpx1 mRNA levels decrease in Se-deficient rats, so molecular biology-based markers have potential for human nutrition assessment. To study the efficacy of molecular biology markers for assessing Se status in humans, we conducted a longitudinal study on 39 subjects (age 45 +/- 11) in Reading, UK. Diet diaries (5 day) and blood were obtained from each subject at 2, 8, 17 and 23 weeks, and plasma Se, glutathione peroxidase (Gpx3) enzyme activity, and selenoprotein mRNA levels were determined. There were no significant longitudinal effects on Se biomarkers. Se intake averaged 48 +/- 14 mu g/d. Plasma Se concentrations averaged 1.13 +/- 0.16 mu mol/l. Plasma Se v. energy-corrected Se intake (ng Se/kJ/d) was significantly correlated, but neither Gpx3 activity v. Se intake (ng Se/kJ/d) nor Gpx3 activity v. plasma Se was significantly correlated. Collectively, this indicates that subjects were on the plateaus of the response curves. Selenoprotein mRNAs were quantitated in total RNA isolated from whole blood, but mRNA levels for Gpx1, selenoprotein H, and selenoprotein W (all highly regulated by Se in rodents), as well selenoprotein P, Gpx3, and phospholipid hydroperoxide glutathione peroxidase were also not significantly correlated with plasma Se. Thus selenoprotein molecular biomarkers, as well as traditional biochemical markers, are unable to further distinguish differences in Se status in these Se replete subjects. The efficacy of molecular biomarkers to detect Se deficiency needs to be tested in Se-deficient populations.
Resumo:
The antioxidant activity of hydroxytyrosol, hydroxytyrosol acetate, oleuropein, 3,4-dihydroxyphenylelenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenyielenolic acid dialdehyde (3,4-DHPEA-EDA) towards oxidation initiated by 2,2'-azobis (2-amidinopropane) hydrochloride in a soybean phospholipid liposome system was studied. The antioxidant activity of these olive oil phenols was similar and the duration of the lag phase was almost twice that of alpha-tocopherol. Trolox(R), a water-soluble analogue of alpha-tocopherol, showed the worst antioxidant activity. However, oxidation before the end of the lag phase was inhibited less effectively by the olive oil phenols than by alpha-tocopherol and Trolox(R). Synergistic effects (11-20% increase in lag phase) were observed in the antioxidant activity of combinations of alpha-tocopherol with olive oil phenols both with and without ascorbic acid. Fluorescence anisotropy of probes and fluorescence quenching studies showed that the olive oil phenols did not penetrate into the membrane, but their effectiveness as antioxidants showed they were associated with the surface of the phospholipid bilayer. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Our objective in this study was to develop and implement an effective intervention strategy to manipulate the amount and composition of dietary fat and carbohydrate (CHO) in free-living individuals in the RISCK study. The study was a randomized, controlled dietary intervention study that was conducted in 720 participants identified as higher risk for or with metabolic syndrome. All followed a 4-wk run-in reference diet [high saturated fatty acids (SF)/high glycemic index (GI)]. Volunteers were randomized to continue this diet for a further 24 wk or to I of 4 isoenergetic prescriptions [high monounsaturated fatty acids (MUFA)/high GI; high MUFA/low GI; low fat (LF)/high GI; and LF/low GI]. We developed a food exchange model to implement each diet. Dietary records and plasma phospholipid fatty acids were used to assess the effectiveness of the intervention strategy. Reported fat intake from the LF diets was significantly reduced to 28% of energy (%E) compared with 38% E from the HM and LF diets. SF intake was successfully decreased in the HM and LF diets was similar to 10% E compared with 17% E in the reference diet (P = 0.001). Dietary MUFA in the HIM diets was similar to 17% E, significantly higher than in the reference (12% E) and LF diets (10% E) (P = 0.001). Changes in plasma phospholipid fatty acids provided further evidence for the successful manipulation of fat intake. The GI of the HGI and LGI arms differed by similar to 9 points (P = 0.001). The food exchange model provided an effective dietary strategy for the design and implementation across multiple sites of 5 experimental diets with specific targets for the proportion of fat and CHO. J. Nutr. 139: 1534-1540, 2009.
Resumo:
Background: The mechanisms involved in the increased mortality from coronary artery disease in British Indo-Asians are not well understood. Objectives: This study aimed to investigate whether British Indo-Asian Sikhs have higher plasma triacylglycerol concentrations, lower platelet phospholipid levels, and lower dietary intakes of long-chain n-3 polyunsaturated fatty acids (PUFAs) than do age- and weight-matched Europeans and whether moderate dietary fish-oil intake can reverse these differences. Design: A randomized, double-blind, placebo-controlled, parallel, fish-oil intervention study was performed. After a 2-wk run-in period, 44 Europeans and 40 Indo-Asian Sikhs were randomly assigned to receive either 4.0 g fish oil [1.5 g eicosapentaenoic acid (EPA) and 1.0 g docosahexaenoic acid (DHA)] or 4.0 g olive oil (control) daily for 12 wk. Results: At baseline, the Indo-Asians had significantly higher plasma triacylglycerol, small dense LDL, apolipoprotein B, and dietary and platelet phospholipid n-6 PUFA values and significantly lower long-chain n-3 PUFAs (EPA and DHA) than did the Europeans. A significant decrease in plasma triacylglycerol, plasma apolipoprotein B-48, and platelet phospholipid arachidonic acid concentrations and a significant increase in plasma HDL concentrations and platelet phospholipid EPA and DHA levels were observed after fish-oil supplementation. No significant effect of ethnicity on the responses to fish-oil supplementation was observed. Conclusions: Moderate fish-oil supplementation contributes to a reversal of lipid abnormalities and low n-3 PUFA levels in Indo-Asians and should be considered as an important, yet simple, dietary manipulation to reduce CAD risk in Indo-Asians with an atherogenic lipoprotein phenotype.
Resumo:
Background & aims: Long term parenteral nutrition rarely supplies the long chain n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). The aim of this study was to assess long chain n-3 PUFA status in patients receiving home parenteral. nutrition (HPN). Methods: Plasma phospholipid fatty acids were measured in 64 adult HPN patients and compared with 54 age, sex and BMI matched controls. Logistic regression analysis was used to identify factors related to plasma fatty acid fractions in the HPN patients, and to identify factors associated with the risk of clinical. complications. Results: Plasma phospholipid fractions of EPA, DPA and DHA were significantly tower in patients receiving HPN. Factors independently associated with tow fractions included high parenteral energy provision, tow parenteral lipid intake, tow BMI and prolonged duration of HPN. Long chain n-3 PUFA fractions were not associated with incidence of either central venous catheter associated infection or central venous thrombosis. However, the fraction of EPA were inversely associated with plasma alkaline phosphatase concentrations. Conclusions: This study demonstrates abnormal long chain n-3 PUFA profiles in patients receiving HPN. Reduced fatty acid intake may be partly responsible. Fatty acid metabolism may also be altered. (C) 2008 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
The early eighties saw the introduction of liposomes as skin drug delivery systems, initially promoted primarily for localised effects with minimal systemic delivery. Subsequently, a novel ultradeformable vesicular system (termed "Transfersomes" by the inventors) was reported for transdermal delivery with an efficiency similar to subcutaneous injection. Further research illustrated that the mechanisms of liposome action depended on the application regime and the vesicle composition and morphology. Ethical, health and supply problems with human skin have encouraged researchers to use skin models. 'IYaditional models involved polymer membranes and animal tissue, but whilst of value for release studies, such models are not always good mimics for the complex human skin barrier, particularly with respect to the stratum corneal intercellular lipid domains. These lipids have a multiply bilayered organization, a composition and organization somewhat similar to liposomes, Consequently researchers have used vesicles as skin model membranes. Early work first employed phospholipid liposomes and tested their interactions with skin penetration enhancers, typically using thermal analysis and spectroscopic analyses. Another approach probed how incorporation of compounds into liposomes led to the loss of entrapped markers, analogous to "fluidization" of stratum corneum lipids on treatment with a penetration enhancer. Subsequently scientists employed liposomes formulated with skin lipids in these types of studies. Following a brief description of the nature of the skin barrier to transdermal drug delivery and the use of liposomes in drug delivery through skin, this article critically reviews the relevance of using different types of vesicles as a model for human skin in permeation enhancement studies, concentrating primarily on liposomes after briefly surveying older models. The validity of different types of liposome is considered and traditional skin models are compared to vesicular model membranes for their precision and accuracy as skin membrane mimics. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The nanostructure of a peptide amphiphile in commercial use in anti-wrinkle creams is investigated. The peptide contains a matrikine, collagen-stimulating, pentapeptide sequence. Selfassembly into giant nanotapes is observed and the internal structure was found to comprise bilayers parallel to the flat tape surfaces.
Resumo:
Fish-oil supplementation can reduce circulating triacylglycerol (TG) levels and cardiovascular risk. This study aimed to assess independent associations between changes in platelet eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and fasting and postprandial (PP) lipoprotein concentrations and LDL oxidation status, following fish-oil intervention. Fiftyfive mildly hypertriacylglycerolaemic (TG 1·5–4·0 mmol/l) men completed a double-blind placebo controlled cross over study, where individuals consumed 6 g fish oil (3 g EPA � DHA) or 6 g olive oil (placebo)/d for two 6-week intervention periods, with a 12-week wash-out period in between. Fish-oil intervention resulted in a significant increase in the platelet phospholipid EPA (+491 %, P,0·001) and DHA (+44 %, P,0·001) content and a significant decrease in the arachidonic acid (210 %, P,0·001) and g-linolenic acid (224 %, P,0·001) levels. A 30% increase in ex vivo LDL oxidation (P,0·001) was observed. In addition, fish oil resulted in a significant decrease in fasting and PP TG levels (P,0·001), PP non-esterified fatty acid (NEFA) levels, and in the percentage LDL as LDL-3 (P�0·040), and an increase in LDLcholesterol (P�0·027). In multivariate analysis, changes in platelet phospholipid DHA emerged as being independently associated with the rise in LDL-cholesterol, accounting for 16% of the variability in this outcome measure (P�0·030). In contrast, increases in platelet EPA were independently associated with the reductions in fasting (P�0·046) and PP TG (P�0·023), and PP NEFA (P�0·015), explaining 15–20% and 25% of the variability in response respectively. Increases in platelet EPA � DHA were independently and positively associated with the increase in LDL oxidation (P�0·011). EPA and DHA may have differential effects on plasma lipids in mildly hypertriacylglycerolaemic men.
Resumo:
The fatty acid compositions of the -choline and -inositol phospholipids of breast tumours of women undergoing surgery for treatment of breast disease (malignant n = 12; benign n = 10) and normal breast tissue of women undergoing breast reduction surgery (n = 6) were determined. The fatty acid compositions of erythrocyte phospholipids were also determined in the same subjects and in an additional number of normal healthy volunteers (n = 16). Levels of oleic acid were lower in both phospholipid fractions of erythrocytes of women with breast disease and in the phosphatidylcholine fraction of breast tumours compared with normal breast tissue. Significantly higher levels of linoleic acid were found in erythrocytes of tumour-bearing subjects and a similar trend was evident in the phosphatidylcholine fraction of tumour compared with normal breast tissues. Conversely, lower levels of two of the products of linoleic acid chain elongation and desaturation, dihomogamma-linolenic and arachidonic acids, were found in the erythrocyte phospholipids of tumour-bearing subjects and in the choline phospholipids of breast tumour tissues. These data suggest that in women with breast disease, there may be inhibition of 6-desaturase, and enhanced activity of 9-desaturase, enzymes which play an important role in determining membrane phospholipid fatty acid composition. This pattern of altered fatty acid composition characteristic of erythrocyte phospholipids of tumour-bearing subjects and phosphatidylcholine of breast tumour tissue was less evident in the case of the breast tumour phosphatidylinositol in which differences other than those described were seen.
Resumo:
The present study investigated the effect of feeding maize-oil, olive-oil and fish-oil diets, from weaning to adulthood, on rat mammary tissue and erythrocyte phospholipid fatty acid compositions. Effects of diet on the relative proportions of membrane phospholipids in the two tissues were also investigated. Mammary tissue phosphatidylinositol (PI) fatty acids were unaltered by diet, but differences in phosphatidylethanolamine (PE) and, to a lesser extent, phosphatidylcholine (PC) fractions were found between animals fed on different diets from weaning. Differences observed were those expected from the dietary fatty acids fed; n-6 fatty acids were found in greatest amounts in maize-oil-fed rats, n-9 in olive-oil-fed rats, and n-3 in fish-oil-fed rats. In erythrocytes the relative susceptibilities of the individual phospholipids to dietary modification were: PE > PC > PI, but enrichment with n-9 and n-3 fatty acids was not observed in olive-oil- and fish-oil-fed animals and in PC and PE significantly greater amounts of saturated fatty acids were found when animals fed on olive oil or fish oil were compared with maize-oil-fed animals. The polyunsaturated:saturated fatty acid ratios of PE and PC fractions were significantly lower in olive-oil- and fish-oil-fed animals. No differences in the relative proportions of phospholipid classes were found between the three dietary groups. It is suggested that differences in erythrocyte fatty acid composition may reflect dietary-induced changes in membrane cholesterol content and may form part of a homoeostatic response the aim of which is to maintain normal erythrocyte membrane fluidity. The resistance of mammary tissue PI fatty acids to dietary modification suggests that alteration of PI fatty acids is unlikely to underlie effects of dietary fat on mammary tumour incidence rates.
Resumo:
This work investigated the role of rpoS in the development of increased cell envelope resilience and enhanced pressure resistance in stationary phase cells of Escherichia coli. Loss of both colony-forming ability and membrane integrity, measured as uptake of propidium iodide (PI), occurred at lower pressures in E. coli BW3709 (rpoS) than in the parental strain (BW2952). The rpoS mutant also released much higher concentrations of protein under pressure than the parent. We propose that RpoS-regulated functions are responsible for the increase in membrane resilience as cells enter stationary phase and that this plays a major role in the development of pressure resistance. Strains from the Keio collection with mutations in two RpoS-regulated genes, cfa (cyclopropane fatty acyl phospholipid synthase) and osmB (outer membrane lipoprotein), were significantly more pressure-sensitive and took up more PI than the parent strains with cfa having the greatest effect. Mutations in the bolA morphogene and other RpoS-regulated lipoprotein genes (osmC, osmE, osmY and ybaY) had no effect on pressure resistance. The cytoplasmic membranes of the rpoS mutant failed to reseal after pressure treatment and strains with mutations in osmB and nlpI (new lipoprotein) were also somewhat impaired in the ability to reseal their membranes. The cfa mutant, though pressure-sensitive, was unaffected in membrane resealing implying that the initial transient permeabilization event is critical for loss of viability rather than the failure to reseal. The enhanced pressure sensitivity of polA, recA and xthA mutants suggested that DNA may be a target of oxidative stress in pressure-treated cells.
Resumo:
esponse to dietary fat manipulation is highly heterogeneous, yet generic population-based recommendations aimed at reducing the burden of CVD are given. The APOE epsilon genotype has been proposed to be an important determinant of this response. The present study reports on the dietary strategy employed in the SATgenɛ (SATurated fat and gene APOE) study, to assess the impact of altered fat content and composition on the blood lipid profile according to the APOE genotype. A flexible dietary exchange model was developed to implement three isoenergetic diets: a low-fat (LF) diet (target composition: 24 % of energy (%E) as fat, 8 %E SFA and 59 %E carbohydrate), a high-saturated fat (HSF) diet (38 %E fat, 18 %E SFA and 45 %E carbohydrate) and a HSF-DHA diet (HSF diet with 3 g DHA/d). Free-living participants (n 88; n 44 E3/E3 and n 44 E3/E4) followed the diets in a sequential design for 8 weeks, each using commercially available spreads, oils and snacks with specific fatty acid profiles. Dietary compositional targets were broadly met with significantly higher total fat (42·8 %E and 41·0 %E v. 25·1 %E, P ≤ 0·0011) and SFA (19·3 %E and 18·6 %E v. 8·33 %E, P ≤ 0·0011) intakes during the HSF and HSF-DHA diets compared with the LF diet, in addition to significantly higher DHA intake during the HSF-DHA diet (P ≤ 0·0011). Plasma phospholipid fatty acid analysis revealed a 2-fold increase in the proportion of DHA after consumption of the HSF-DHA diet for 8 weeks, which was independent of the APOE genotype. In summary, the dietary strategy was successfully implemented in a free-living population resulting in well-tolerated diets which broadly met the dietary targets set.
Resumo:
The peptide AAKLVFF assembles into fibrils in water and nanotubes in methanol. Solid-state NMR data are consistent with fibrils constructed from β-sheet bilayers and nanotubes bounded by a wall of offset β-sheet monolayers. Remarkably distinct morphologies are thus traced to subtle differences in the arrangement of the same fundamental building blocks.