29 resultados para PASCAL
Resumo:
This article suggests that the addressees as the dialogical ‘other’ loom large in monological political speeches. However, political speeches are produced under conditions of addressee heterogeneity, i.e. the speakers do not actually know who they will be talking to. It will be argued that the addressees are nevertheless a crucial element in speakers’ context models, that speakers orientate towards imagined addressees and that certain aspects – what possible addressees may do, think or believe and that they are a part of an imagined community – are particularly relevant from the speakers’ point of view. An analysis of addressee orientation in political speeches aims at reconstructing speakers’ conceptualisations of possible addressees. The analysis reveals patterns of addressee orientation which suggest that the addressees are framed in terms of presumed nearness (i.e. agreement) or distance (i.e. disagreement) to the speakers. Both presumed agreement and disagreement will be discussed in terms of how the speakers aim to impose their default perspectives on the addressees. The analysis is based on examples from a substantial corpus of German chancellors’ political speeches from 1951-2001.
Resumo:
This paper is to present a model of spatial equilibrium using a nonlinear generalization of Markov-chain type model, and to show the dynamic stability of a unique equilibrium. Even at an equilibrium, people continue to migrate among regions as well as among agent-types, and yet their overall distribution remain unchanged. The model is also adapted to suggest a theory of traffic distribution in a city.
Resumo:
Reconstructing past water availability, both as rainfall and irrigation, is important to answer questions about the way society reacts to climate and its changes and the role of irrigation in the development of social complexity. Carbon stable isotope analysis of archaeobotanical remains is a potentially valuable method for reconstructing water availability. To further define the relationship between water availability and plant carbon isotope composition and to set up baseline values for the Southern Levant, grains of experimentally grown barley and sorghum were studied. The cereal crops were grown at three stations under five different irrigation regimes in Jordan. Results indicate that a positive but weak relationship exists between irrigation regime and total water input of barley grains, but no relationship was found for sorghum. The relationship for barley is site-specific and inter-annual variation was present at Deir ‘Alla, but not at Ramtha and Khirbet as-Samra.
Resumo:
A holistic perspective on changing rainfall-driven flood risk is provided for the late 20th and early 21st centuries. Economic losses from floods have greatly increased, principally driven by the expanding exposure of assets at risk. It has not been possible to attribute rain-generated peak streamflow trends to anthropogenic climate change over the past several decades. Projected increases in the frequency and intensity of heavy rainfall, based on climate models, should contribute to increases in precipitation-generated local flooding (e.g. flash flooding and urban flooding). This article assesses the literature included in the IPCC SREX report and new literature published since, and includes an assessment of changes in flood risk in seven of the regions considered in the recent IPCC SREX report—Africa, Asia, Central and South America, Europe, North America, Oceania and Polar regions. Also considering newer publications, this article is consistent with the recent IPCC SREX assessment finding that the impacts of climate change on flood characteristics are highly sensitive to the detailed nature of those changes and that presently we have only low confidence1 in numerical projections of changes in flood magnitude or frequency resulting from climate change.
Resumo:
Satellite data are increasingly used to provide observation-based estimates of the effects of aerosols on climate. The Aerosol-cci project, part of the European Space Agency's Climate Change Initiative (CCI), was designed to provide essential climate variables for aerosols from satellite data. Eight algorithms, developed for the retrieval of aerosol properties using data from AATSR (4), MERIS (3) and POLDER, were evaluated to determine their suitability for climate studies. The primary result from each of these algorithms is the aerosol optical depth (AOD) at several wavelengths, together with the Ångström exponent (AE) which describes the spectral variation of the AOD for a given wavelength pair. Other aerosol parameters which are possibly retrieved from satellite observations are not considered in this paper. The AOD and AE (AE only for Level 2) were evaluated against independent collocated observations from the ground-based AERONET sun photometer network and against “reference” satellite data provided by MODIS and MISR. Tools used for the evaluation were developed for daily products as produced by the retrieval with a spatial resolution of 10 × 10 km2 (Level 2) and daily or monthly aggregates (Level 3). These tools include statistics for L2 and L3 products compared with AERONET, as well as scoring based on spatial and temporal correlations. In this paper we describe their use in a round robin (RR) evaluation of four months of data, one month for each season in 2008. The amount of data was restricted to only four months because of the large effort made to improve the algorithms, and to evaluate the improvement and current status, before larger data sets will be processed. Evaluation criteria are discussed. Results presented show the current status of the European aerosol algorithms in comparison to both AERONET and MODIS and MISR data. The comparison leads to a preliminary conclusion that the scores are similar, including those for the references, but the coverage of AATSR needs to be enhanced and further improvements are possible for most algorithms. None of the algorithms, including the references, outperforms all others everywhere. AATSR data can be used for the retrieval of AOD and AE over land and ocean. PARASOL and one of the MERIS algorithms have been evaluated over ocean only and both algorithms provide good results.
Resumo:
Little is known about why people differ in their levels of academic motivation. This study explored the etiology of individual differences in enjoyment and self-perceived ability for several school subjects in nearly 13,000 twins aged 9 to 16 from 6 countries. The results showed a striking consistency across ages, school subjects, and cultures. Contrary to common belief, enjoyment of learning and children’s perceptions of their competence were no less heritable than cognitive ability. Genetic factors explained approximately 40% of the variance and all of the observed twins’ similarity in academic motivation. Shared environmental factors, such as home or classroom, did not contribute to the twin’s similarity in academic motivation. Environmental influences stemmed entirely from individual specific experiences.
Resumo:
The Pre-Pottery Neolithic A (PPNA) period in Southwest Asia is essential for our understanding of the transition to sedentary, agricultural communities. Developments in architecture are key to understanding this transition, but many aspects of PPNA architecture remain elusive, such as construction techniques, the selection of building materials, and the functional use of space. The primary aim of the research described within this contribution was to build a PPNA-like structure in order to answer questions about PPNA architecture in general, while specifically addressing issues raised by the excavation of structures at the site of WF16, Southern Jordan. The second aim was to display a ‘PPNA’ building to visitors in Wadi Faynan to enhance their understanding of the period. The experimental construction based on one of the WF16 structures showed that 1) required materials can be acquired locally; 2) a construction technique using mud layers as described in this paper was likely used; 3) flat, or very slightly dome-shaped, roofs are functional and can also be used as a solid working platform; 4) the WF16 small semi-subterranean buildings appear inappropriate for housing a nuclear family unit.
Resumo:
Climate change is often cited as a major factor in social change. The so-called 8.2 ka event was one of the most pronounced and abrupt Holocene cold and arid events. The 9.2 ka event was similar, albeit of a smaller magnitude. Both events affected the Northern Hemisphere climate and caused cooling and aridification in Southwest Asia. Yet, the impacts of the 8.2 and 9.2 ka events on early farming communities in this region are not well understood. Current hypotheses for an effect of the 8.2 ka event vary from large-scale site abandonment and migration (including the Neolithisation of Europe) to continuation of occupation and local adaptation, while impacts of the 9.2 ka have not previously been systematically studied. In this paper, we present a thorough assessment of available, quality-checked radiocarbon (14C) dates for sites from Southwest Asia covering the time interval between 9500 and 7500 cal BP, which we interpret in combination with archaeological evidence. In this way, the synchronicity between changes observed in the archaeological record and the rapid climate events is tested. It is shown that there is no evidence for a simultaneous and widespread collapse, large-scale site abandonment, or migration at the time of the events. However, there are indications for local adaptation. We conclude that early farming communities were resilient to the abrupt, severe climate changes at 9250 and 8200 cal BP.
Resumo:
An edited discussion of issues surrounding non-Latin typeface development
Resumo:
We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.