37 resultados para Oxygen species


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endothelial cells (EC) express constitutively two major isofonns (Nox2 and Nox4) of the catalytic subunit of NADPH oxidase, which is a major source of endothelial reactive oxygen species. However, the individual roles of these Noxes in endothelial function remain unclear. We have investigated the role of Nox2 in nutrient deprivation-induced cell cycle arrest and apoptosis. In proliferating human dermal microvascular EC, Nox2 mRNA expression was low relative to Nox4 (Nox2:Nox4 similar to 1:13), but was upregulated 24 It after starvation and increased to 8 +/- 3.5-fold at 36 h of starvation. Accompanying the upregulation of Nox2, there was a 2.28 +/- 0.18-fold increase in O-2(-); production, a dramatic induction of p21(cip1) and p53, cell cycle arrest, and the onset of apoptosis (all p < 0.05). All these changes were inhibited significantly by in vitro deletion of Nox2 expression and in coronary microvascular EC isolated from Nox2 knockout mice. In Nox2 knockout cells, although there was a 3.8 +/- 0.5fold increase in Nox4 mRNA expression after 36 h of starvation (p < 0.01), neither production nor the p21(cip1) or p53 expression was increased significantly and only 0.46% of cells were apoptotic. In conclusion, Nox2-derived O-2(-), through the modulation of p21(cip1) and p53 expression, participates in endothelial cell cycle regulation and apoptosis. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and purpose: Molecular mechanisms underlying the links between dietary intake of flavonoids and reduced cardiovascular disease risk are only partially understood. Key events in the pathogenesis of cardiovascular disease, particularly thrombosis, are inhibited by these polyphenolic compounds via mechanisms such as inhibition of platelet activation and associated signal transduction, attenuation of generation of reactive oxygen species, enhancement of nitric oxide production and binding to thromboxane A2 receptors. In vivo, effects of flavonoids are mediated by their metabolites, but the effects and modes of action of these compounds are not well-characterized. A good understanding of flavonoid structure–activity relationships with regard to platelet function is also lacking. Experimental approach: Inhibitory potencies of structurally distinct flavonoids (quercetin, apigenin and catechin) and plasma metabolites (tamarixetin, quercetin-3′-sulphate and quercetin-3-glucuronide) for collagen-stimulated platelet aggregation and 5-hydroxytryptamine secretion were measured in human platelets. Tyrosine phosphorylation of total protein, Syk and PLCγ2 (immunoprecipitation and Western blot analyses), and Fyn kinase activity were also measured in platelets. Internalization of flavonoids and metabolites in a megakaryocytic cell line (MEG-01 cells) was studied by fluorescence confocal microscopy. Key results: The inhibitory mechanisms of these compounds included blocking Fyn kinase activity and the tyrosine phosphorylation of Syk and PLCγ2 following internalization. Principal functional groups attributed to potent inhibition were a planar, C-4 carbonyl substituted and C-3 hydroxylated C ring in addition to a B ring catechol moiety. Conclusions and implications: The structure–activity relationship for flavonoids on platelet function presented here may be exploited to design selective inhibitors of cell signalling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iron is both an essential nutrient for the growth of microorganisms, as well as a dangerous metal due to its capacity to generate reactive oxygen species (ROS) via the Fenton reaction. For these reasons, bacteria must tightly control the uptake and storage of iron in a manner that restricts the build-up of ROS. Therefore, it is not surprising to find that the control of iron homeostasis and responses to oxidative stress are coordinated. The mechanisms concerned with these processes, and the interactions involved, are the subject of this review.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The Ferritins are part of the extensive ‘Ferritin-like superfamily’ which have diverse functions but are linked by the presence of a common four-helical bundle domain. The role performed by Ferritins as the cellular repository of excess iron is unique. In many ways Ferritins act as tiny organelles in their ability to secrete iron away from the delicate machinery of the cell, and then to release it again in a controlled fashion avoiding toxicity. The Ferritins are ancient proteins, being common in all three domains of life. This ubiquity reflects the key contribution that Ferritins provide in achieving iron homeostasis. Scope of the review: This review compares the features of the different Ferritins and considers how they, and other members of the Ferritin-like superfamily, have evolved. It also considers relevant features of the eleven other known families within the Ferritin-like superfamily, particularly the highly diverse rubrerythrins. Major conclusions: The Ferritins have travelled a considerable evolutionary journey, being derived from far more simplistic rubrerythrin-like molecules which play roles in defence against toxic oxygen species. The forces of evolution have moulded such molecules into three distinct types of iron storing (or detoxifying) protein: the classical and universal 24-meric ferritins; the haem-containing 24-meric bacterioferritins of prokaryotes; and the prokaryotic 12-meric Dps proteins. These three Ferritin types are similar, but also possess unique properties that distinguish them and enable then to achieve their specific physiological purposes. General significance: A wide range of biological functions have evolved from a relatively simple structural unit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant cell growth and stress signaling require Ca2+ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH_. In root cells, extracellular OH_ activates a plasma membrane Ca2+-permeable conductance that permits Ca2+ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca2+-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH_-activated Ca2+- and K+-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca2+ in response to OH_. An OH_-activated Ca2+ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca2+-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca2+ in plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The objective of this study was to explore the relationship between low density lipoprotein (LDL) and dendritic cell (DC) activation, based upon the hypothesis that reactive oxygen species (ROS)-mediated modification of proteins that may be present in local DC microenvironments could be important as mediators of this activation. Although LDL are known to be oxidised in vivo, and taken up by macrophages during atherogenesis; their effect on DC has not been explored previously. Methods: Human DCs were prepared from peripheral blood monocytes using GM-CSF and IL-4. Plasma LDLs were isolated by sequential gradient centrifugation, oxidised in CuSO4, and oxidation arrested to yield mild, moderate and highly oxidised LDL forms. DCs exposed to these LDLs were investigated using combined phenotypic, functional (autologous T cell activation), morphological and viability assays. Results: Highly-oxidised LDL increased DC HLA-DR, CD40 and CD86 expression, corroborated by increased DC-induced T cell proliferation. Both native and oxidised LDL induced prominent DC clustering. However, high concentrations of highly-oxidised LDL inhibited DC function, due to increased DC apoptosis. Conclusions: This study supports the hypothesis that oxidised LDL are capable of triggering the transition from sentinel to messenger DC. Furthermore, the DC clustering–activation–apoptosis sequence in the presence of different LDL forms is consistent with a regulatory DC role in immunopathogenesis of atheroma. A sequence of initial accumulation of DC, increasing LDL oxidation, and DC-induced T cell activation, may explain why local breach of tolerance can occur. Above a threshold level, however, supervening DC apoptosis limits this, contributing instead to the central plaque core.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TRPA1 is an excitatory ion channel expressed by a subpopulation of primary afferent somatosensory neurons that contain substance P and calcitonin gene-related peptide. Environmental irritants such as mustard oil, allicin, and acrolein activate TRPA1, causing acute pain, neuropeptide release, and neurogenic inflammation. Genetic studies indicate that TRPA1 is also activated downstream of one or more proalgesic agents that stimulate phospholipase C signaling pathways, thereby implicating this channel in peripheral mechanisms controlling pain hypersensitivity. However, it is not known whether tissue injury also produces endogenous proalgesic factors that activate TRPA1 directly to augment inflammatory pain. Here, we report that recombinant or native TRPA1 channels are activated by 4-hydroxy-2-nonenal (HNE), an endogenous alpha,beta-unsaturated aldehyde that is produced when reactive oxygen species peroxidate membrane phospholipids in response to tissue injury, inflammation, and oxidative stress. HNE provokes release of substance P and calcitonin gene-related peptide from central (spinal cord) and peripheral (esophagus) nerve endings, resulting in neurogenic plasma protein extravasation in peripheral tissues. Moreover, injection of HNE into the rodent hind paw elicits pain-related behaviors that are inhibited by TRPA1 antagonists and absent in animals lacking functional TRPA1 channels. These findings demonstrate that HNE activates TRPA1 on nociceptive neurons to promote acute pain, neuropeptide release, and neurogenic inflammation. Our results also provide a mechanism-based rationale for developing novel analgesic or anti-inflammatory agents that target HNE production or TRPA1 activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CO stimulates formation of NO and reactive oxygen species which, via peroxynitrite formation, inhibit Ca(2+) extrusion via PMCA, leading to disruption of Ca(2+) signaling. We propose this contributes to the neurological damage associated with CO toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative stress induces neuronal apoptosis and is implicated in cerebral ischemia, head trauma, and age-related neurodegenerative diseases. An early step in this process is the loss of intracellular K(+) via K(+) channels, and evidence indicates that K(v)2.1 is of particular importance in this regard, being rapidly inserted into the plasma membrane in response to apoptotic stimuli. An additional feature of neuronal oxidative stress is the up-regulation of the inducible enzyme heme oxygenase-1 (HO-1), which catabolizes heme to generate biliverdin, Fe(2+), and carbon monoxide (CO). CO provides neuronal protection against stresses such as stroke and excitotoxicity, although the underlying mechanisms are not yet elucidated. Here, we demonstrate that CO reversibly inhibits K(v)2.1. Channel inhibition by CO involves reactive oxygen species and protein kinase G activity. Overexpression of K(v)2.1 in HEK293 cells increases their vulnerability to oxidant-induced apoptosis, and this is reversed by CO. In hippocampal neurons, CO selectively inhibits K(v)2.1, reverses the dramatic oxidant-induced increase in K(+) current density, and provides marked protection against oxidant-induced apoptosis. Our results provide a novel mechanism to account for the neuroprotective effects of CO against oxidative apoptosis, which has potential for therapeutic exploitation to provide neuronal protection in situations of oxidative stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A wealth of recent studies has highlighted the diverse and important influences of carbon monoxide (CO) on cellular signaling pathways. Such studies have implicated CO, and the enzymes from which it is derived (heme oxygenases) as potential therapeutic targets, particularly (although not exclusively) in inflammation, immunity and cardiovascular disease.1 In a recent study,2 we demonstrated that CO inhibited cardiac L-type Ca(2+) channels. This effect arose due to the ability of CO to bind to mitochondria (presumably at complex IV of the electron transport chain) and so cause electron leak, which resulted in increased production of reactive oxygen species. These modulated the channel's activity through interactions with three cysteine residues in the cytosolic C-terminus of the channel's major, pore-forming subunit. Our study provided a potential mechanism for the cardioprotective effects of CO and also highlighted ion channels as a major potential target group for this gasotransmitter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protein encoded by the PPARGC1A gene is expressed at high levels in metabolically active tissues and is involved in the control of oxidative stress via reactive oxygen species detoxification. Several recent reports suggest that the PPARGC1A Gly482Ser (rs8192678) missense polymorphism may relate inversely with blood pressure. We used conventional meta-analysis methods to assess the association between Gly482Ser and systolic (SBP) or diastolic blood pressures (DBP) or hypertension in 13,949 individuals from 17 studies, of which 6,042 were previously unpublished observations. The studies comprised cohorts of white European, Asian, and American Indian adults, and adolescents from South America. Stratified analyses were conducted to control for population stratification. Pooled genotype frequencies were 0.47 (Gly482Gly), 0.42 (Gly482Ser), and 0.11 (Ser482Ser). We found no evidence of association between Gly482Ser and SBP [Gly482Gly: mean = 131.0 mmHg, 95% confidence interval (CI) = 130.5-131.5 mmHg; Gly482Ser mean = 133.1 mmHg, 95% CI = 132.6-133.6 mmHg; Ser482Ser: mean = 133.5 mmHg, 95% CI = 132.5-134.5 mmHg; P = 0.409] or DBP (Gly482Gly: mean = 80.3 mmHg, 95% CI = 80.0-80.6 mmHg; Gly482Ser mean = 81.5 mmHg, 95% CI = 81.2-81.8 mmHg; Ser482Ser: mean = 82.1 mmHg, 95% CI = 81.5-82.7 mmHg; P = 0.651). Contrary to previous reports, we did not observe significant effect modification by sex (SBP, P = 0.966; DBP, P = 0.715). We were also unable to confirm the previously reported association between the Ser482 allele and hypertension [odds ratio: 0.97, 95% CI = 0.87-1.08, P = 0.585]. These results were materially unchanged when analyses were focused on whites only. However, statistical evidence of gene-age interaction was apparent for DBP [Gly482Gly: 73.5 (72.8, 74.2), Gly482Ser: 77.0 (76.2, 77.8), Ser482Ser: 79.1 (77.4, 80.9), P = 4.20 x 10(-12)] and SBP [Gly482Gly: 121.4 (120.4, 122.5), Gly482Ser: 125.9 (124.6, 127.1), Ser482Ser: 129.2 (126.5, 131.9), P = 7.20 x 10(-12)] in individuals <50 yr (n = 2,511); these genetic effects were absent in those older than 50 yr (n = 5,088) (SBP, P = 0.41; DBP, P = 0.51). Our findings suggest that the PPARGC1A Ser482 allele may be associated with higher blood pressure, but this is only apparent in younger adults.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) was only 'discovered' in the 1990s. Since then, many new ligands have been identified, as well as many new intracellular targets--ranging from the PPARs, to mitochondria, to lipid rafts. It was thought that blocking the CB-1 receptor might reverse obesity and the metabolic syndrome. This was based on the idea that the ECS was dysfunctional in these conditions. This has met with limited success. The reason may be that the ECS is a homeostatic system, which integrates energy seeking and storage behaviour with resistance to oxidative stress. It could be viewed as having thrifty actions. Thriftiness is an innate property of life, which is programmed to a set point by both environment and genetics, resulting in an epigenotype perfectly adapted to its environment. This thrifty set point can be modulated by hormetic stimuli, such as exercise, cold and plant micronutrients. We have proposed that the physiological and protective insulin resistance that underlies thriftiness encapsulates something called 'redox thriftiness', whereby insulin resistance is determined by the ability to resist oxidative stress. Modern man has removed most hormetic stimuli and replaced them with a calorific sedentary lifestyle, leading to increased risk of metabolic inflexibility. We suggest that there is a tipping point where lipotoxicity in adipose and hepatic cells induces mild inflammation, which switches thrifty insulin resistance to inflammation-driven insulin resistance. To understand this, we propose that the metabolic syndrome could be seen from the viewpoint of the ECS, the mitochondrion and the FOXO group of transcription factors. FOXO has many thrifty actions, including increasing insulin resistance and appetite, suppressing oxidative stress and shifting the organism towards using fatty acids. In concert with factors such as PGC-1, they also modify mitochondrial function and biogenesis. Hence, the ECS and FOXO may interact at many points; one of which may be via intracellular redox signalling. As cannabinoids have been shown to modulate reactive oxygen species production, it is possible that they can upregulate anti-oxidant defences. This suggests they may have an 'endohormetic' signalling function. The tipping point into the metabolic syndrome may be the result of a chronic lack of hormetic stimuli (in particular, physical activity), and thus, stimulus for PGC-1, with a resultant reduction in mitochondrial function and a reduced lipid capacitance. This, in the context of a positive calorie environment, will result in increased visceral adipose tissue volume, abnormal ectopic fat content and systemic inflammation. This would worsen the inflammatory-driven pathological insulin resistance and inability to deal with lipids. The resultant oxidative stress may therefore drive a compensatory anti-oxidative response epitomised by the ECS and FOXO. Thus, although blocking the ECS (e.g. via rimonabant) may induce temporary weight loss, it may compromise long-term stress resistance. Clues about how to modulate the system more safely are emerging from observations that some polyphenols, such as resveratrol and possibly, some phytocannabinoids, can modulate mitochondrial function and might improve resistance to a modern lifestyle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evidence has accumulated in recent years that suggests that nitrate from the diet, particularly vegetables, is capable of producing bioactive NO in the vasculature, following bioconversion to nitrite by oral bacteria. The aim of the present review was to consider the current body of evidence for potential beneficial effects of dietary nitrate on blood pressure and endothelial function, with emphasis on evidence from acute and chronic human intervention studies. The studies to date suggest that dietary nitrate acutely lowers blood pressure in healthy humans. An inverse relationship was seen between dose of nitrate consumed and corresponding systolic blood pressure reduction, with doses of nitrate as low as 3 mmol of nitrate reducing systolic blood pressure by 3 mmHg. Moreover, the current studies provide some promising evidence on the beneficial effects of dietary nitrate on endothelial function. In vitro studies suggest a number of potential mechanisms by which dietary nitrate and its sequential reduction to NO may reduce blood pressure and improve endothelial function, such as: acting as a substrate for endothelial NO synthase; increasing vasodilation; inhibiting mitochondrial reactive oxygen species production and platelet aggregation. In conclusion, the evidence for beneficial effects of dietary nitrate on blood pressure and endothelial function is promising. Further long-term randomised controlled human intervention studies assessing the potential effects of dietary nitrate on blood pressure and endothelial function are needed, particularly in individuals with hypertension and at risk of CVD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epigenetic regulations play important roles in plant development and adaptation to environmental stress. Recent studies from mammalian systems have demonstrated the involvement of ten-eleven translocation (Tet) family of dioxygenases in the generation of a series of oxidized derivatives of 5-methylcytosine (5-mC) in mammalian DNA. In addition, these oxidized 5-mC nucleobases have important roles in epigenetic remodeling and aberrant levels of 5-hydroxymethyl-29-deoxycytidine (5-HmdC) were found to be associated with different types of human cancers. However, there is a lack of evidence supporting the presence of these modified bases in plant DNA. Here we reported the use of a reversed-phase HPLC coupled with tandem mass spectrometry method and stable isotope-labeled standards for assessing the levels of the oxidized 5-mC nucleosides along with two other oxidatively induced DNA modifications in genomic DNA of Arabidopsis. These included 5- HmdC, 5-formyl-29-deoxycytidine (5-FodC), 5-carboxyl-29-deoxycytidine (5-CadC), 5-hydroxymethyl-29-deoxyuridine (5- HmdU), and the (59S) diastereomer of 8,59-cyclo-29-deoxyguanosine (S-cdG). We found that, in Arabidopsis DNA, the levels of 5-HmdC, 5-FodC, and 5-CadC are approximately 0.8 modifications per 106 nucleosides, with the frequency of 5-HmdC (per 5-mdC) being comparable to that of 5-HmdU (per thymidine). The relatively low levels of the 5-mdC oxidation products suggest that they arise likely from reactive oxygen species present in cells, which is in line with the lack of homologous Tetfamily dioxygenase enzymes in Arabidopsis.