41 resultados para Optimization procedures
Resumo:
Fluorophos and colourimetric procedures for alkaline phosphatase (ALP) testing were compared using milk with raw milk additions, purified bovine ALP additions and heat treatments. Repeatability was between 0.9% and 10.1% for Fluorophos, 3.5% and 46.1% for the Aschaffenburg and Mullen (A&M) procedure and 4.4% and 8.8% for the Scharer rapid test. Linearity (R-2) using raw milk addition was 0.96 between Fluorophos and the Scharer procedure. Between the Fluorophos and the A&M procedures, R-2 values were 0.98, 0.99 and 0.98 for raw milk additions, bovine ALP additions and heat treatments respectively. Fluorophos showed greater sensitivity and was both faster and simpler to perform.
Resumo:
Metallized plastics have recently received significant interest for their useful applications in electronic devices such as for integrated circuits, packaging, printed circuits and sensor applications. In this work the metallized films were developed by electroless copper plating of polyethylene films grafted with vinyl ether of monoethanoleamine. There are several techniques for metal deposition on surface of polymers such as evaporation, sputtering, electroless plating and electrolysis. In this work the metallized films were developed by electroless copper plating of polyethylene films grafted with vinyl ether of monoethanoleamine. Polyethylene films were subjected to gamma-radiation induced surface graft copolymerization with vinyl ether of monoethanolamine. Electroless copper plating was carried out effectively on the modified films. The catalytic processes for the electroless copper plating in the presence and the absence of SnCl2 sensitization were studied and the optimum activation conditions that give the highest plating rate were determined. The effect of grafting degree on the plating rate is studied. Electroless plating conditions (bath additives, pH and temperature) were optimized. Plating rate was determined gravimetrically and spectrophotometrically at different grafting degrees. The results reveal that plating rate is a function of degree of grafting and increases with increasing grafted vinyl ether of monoethanolamine onto polyethylene. It was found that pH 13 of electroless bath and plating temperature 40°C are the optimal conditions for the plating process. The increasing of grafting degree results in faster plating rate at the same pH and temperature. The surface morphology of the metallized films was investigated using scanning electron microscopy (SEM). The adhesion strength between the metallized layer and grafted polymer was studied using tensile machine. SEM photos and adhesion measurements clarified that uniform and adhered deposits were obtained under optimum conditions.
Resumo:
This paper considers possible problems researchers might face when interpreting the results of studies that employ variants of the preference procedure. Infants show a tendency to shift their preference from familiar to novel stimuli with increasing exposure to the familiar stimulus, a behaviour that is exploited by the habituation paradigm. This change in attentional preference with exposure leads us to suggest that researchers interested in infants' pre-experimental or spontaneous preferences should beware of the potentially confounding effects of exposing infants to familiarization trials prior to employing the preference procedure. The notion that infant attentional preference is dynamic also calls into question the use of the direction of post-familiarization preference per se when interpreting the knowledge or strategies available to infants. We look into the results of a cross-modal word learning study to show how the interpretation of results may be difficult when infants exhibit a significant preference in an unexpected direction. As a possible solution to this problem we propose that significant preferences in both directions should be sought at multiple intervals over time. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
This paper deals with the design of optimal multiple gravity assist trajectories with deep space manoeuvres. A pruning method which considers the sequential nature of the problem is presented. The method locates feasible vectors using local optimization and applies a clustering algorithm to find reduced bounding boxes which can be used in a subsequent optimization step. Since multiple local minima remain within the pruned search space, the use of a global optimization method, such as Differential Evolution, is suggested for finding solutions which are likely to be close to the global optimum. Two case studies are presented.
Resumo:
Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.
Resumo:
In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.
Resumo:
Purpose - The purpose of this paper is to identify the most popular techniques used to rank a web page highly in Google. Design/methodology/approach - The paper presents the results of a study into 50 highly optimized web pages that were created as part of a Search Engine Optimization competition. The study focuses on the most popular techniques that were used to rank highest in this competition, and includes an analysis on the use of PageRank, number of pages, number of in-links, domain age and the use of third party sites such as directories and social bookmarking sites. A separate study was made into 50 non-optimized web pages for comparison. Findings - The paper provides insight into the techniques that successful Search Engine Optimizers use to ensure a page ranks highly in Google. Recognizes the importance of PageRank and links as well as directories and social bookmarking sites. Research limitations/implications - Only the top 50 web sites for a specific query were analyzed. Analysing more web sites and comparing with similar studies in different competition would provide more concrete results. Practical implications - The paper offers a revealing insight into the techniques used by industry experts to rank highly in Google, and the success or other-wise of those techniques. Originality/value - This paper fulfils an identified need for web sites and e-commerce sites keen to attract a wider web audience.
Resumo:
A quadratic programming optimization procedure for designing asymmetric apodization windows tailored to the shape of time-domain sample waveforms recorded using a terahertz transient spectrometer is proposed. By artificially degrading the waveforms, the performance of the designed window in both the time and the frequency domains is compared with that of conventional rectangular, triangular (Mertz), and Hamming windows. Examples of window optimization assuming Gaussian functions as the building elements of the apodization window are provided. The formulation is sufficiently general to accommodate other basis functions. (C) 2007 Optical Society of America
Resumo:
In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.