57 resultados para Optimal control problems
Resumo:
This paper examines optimal solutions of control systems with drift defined on the orthonormal frame bundle of particular Riemannian manifolds of constant curvature. The manifolds considered here are the space forms Euclidean space E-3, the spheres S-3 and the hyperboloids H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1,3). The optimal controls of these systems are solved explicitly in terms of elliptic functions. In this paper, a geometric interpretation of the extremal solutions is given with particular emphasis to a singularity in the explicit solutions. Using a reduced form of the Casimir functions the geometry of these solutions are illustrated.
Resumo:
This paper uses genetic algorithms to optimise the mathematical model of a beer fermentation process that operates in batch mode. The optimisation is based in adjusting the temperature profile of the mixture during a fixed period of time in order to reach the required ethanol levels but considering certain operational and quality restrictions.
Resumo:
DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.
Resumo:
A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses dynamic integrated system optimisation and parameter estimation (DISOPE) which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A new method for approximating some Jacobian trajectories required by the algorithm is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch chemical processes.