19 resultados para Open-air schools
Resumo:
Recent paleoclimate studies provide strong evidence for an association between cosmogenic isotope production and Earth’s climate throughout the holecene. These isotopes are generated by the bombardment of Earth’s atmosphere by galactic cosmic rays, the fluxes of which vary in approximately inverse proportion to the total open magnetic flux of the Sun. This paper discusses how results from the Ulysses spacecraft allow us to quantify the open solar flux from observations of near-Earth interplanetary space and to study its long-term variations using the homogeneous record of geomagnetic activity. A study of the results and of their accuracy is presented. The two proposed mechanisms that could lead to the open solar flux being a good proxy for solar-induced climate change are discussed: the first is the modulation of the production of some types of cloud by the air ions produced by cosmic rays; the second is a variation in the total or spectral solar irradiance, in association with changes in the open flux. Some implications for our understanding of anthropogenic climate change are discussed.
Resumo:
Massive Open Online Courses (MOOCs) have become very popular among learners millions of users from around the world registered with leading platforms. There are hundreds of universities (and other organizations) offering MOOCs. However, sustainability of MOOCs is a pressing concern as MOOCs incur up front creation costs, maintenance costs to keep content relevant and on-going support costs to provide facilitation while a course is being run. At present, charging a fee for certification (for example Coursera Signature Track and FutureLearn Statement of Completion) seems a popular business model. In this paper, the authors discuss other possible business models and their pros and cons. Some business models discussed here are: Freemium model – providing content freely but charging for premium services such as course support, tutoring and proctored exams. Sponsorships – courses can be created in collaboration with industry where industry sponsorships are used to cover the costs of course production and offering. For example Teaching Computing course was offered by the University of East Anglia on the FutureLearn platform with the sponsorship from British Telecom while the UK Government sponsored the course Introduction to Cyber Security offered by the Open University on FutureLearn. Initiatives and Grants – The government, EU commission or corporations could commission the creation of courses through grants and initiatives according to the skills gap identified for the economy. For example, the UK Government’s National Cyber Security Programme has supported a course on Cyber Security. Similar initiatives could also provide funding to support relevant course development and offering. Donations – Free software, Wikipedia and early OER initiatives such as the MIT OpenCourseware accept donations from the public and this could well be used as a business model where learners could contribute (if they wish) to the maintenance and facilitation of a course. Merchandise – selling merchandise could also bring revenue to MOOCs. As many participants do not seek formal recognition (European Commission, 2014) for their completion of a MOOC, merchandise that presents their achievement in a playful way could well be attractive for them. Sale of supplementary material –supplementary course material in the form of an online or physical book or similar could be sold with the revenue being reinvested in the course delivery. Selective advertising – courses could have advertisements relevant to learners Data sharing – though a controversial topic, sharing learner data with relevant employers or similar could be another revenue model for MOOCs. Follow on events – the courses could lead to follow on summer schools, courses or other real-life or online events that are paid-for in which case a percentage of the revenue could be passed on to the MOOC for its upkeep. Though these models are all possible ways of generating revenue for MOOCs, some are more controversial and sensitive than others. Nevertheless unless appropriate business models are identified the sustainability of MOOCs would be problematic.
Resumo:
The evergreen Quercus ilex L. is one of the most common trees in Italian urban environments and is considered effective in the uptake of particulate and gaseous atmospheric pollutants. However, the few available estimates on O3 and NO2 removal by urban Q. ilex originate from model-based studies (which indicate NO2/O3 removal capacity of Q. ilex) and not from direct measurements of air pollutant concentrations. Thus, in the urban area of Siena (central Italy) we began long-term monitoring of O3/NO2 concentrations using passive samplers at a distance of 1, 5, 10 m from a busy road, under the canopies of Q. ilex and in a nearby open-field. Measurements performed in the period June 2011-October 2013 showed always a greater decrease of NO2 concentrations under the Q. ilex canopy than in the open-field transect. Conversely, a decrease of average O3 concentrations under the tree canopy was found only in autumn after the typical Mediterranean post-summer rainfalls. Our results indicate that interactions between O3/NO2 concentrations and trees in Mediterranean urban ecosystems are affected by temporal variations in climatic conditions. We argue therefore that the direct measurement of atmospheric pollutant concentrations should be chosen to describe local changes of aerial pollution.
Resumo:
Existing urban meteorological networks have an important role to play as test beds for inexpensive and more sustainable measurement techniques that are now becoming possible in our increasingly smart cities. The Birmingham Urban Climate Laboratory (BUCL) is a near-real-time, high-resolution urban meteorological network (UMN) of automatic weather stations and inexpensive, nonstandard air temperature sensors. The network has recently been implemented with an initial focus on monitoring urban heat, infrastructure, and health applications. A number of UMNs exist worldwide; however, BUCL is novel in its density, the low-cost nature of the sensors, and the use of proprietary Wi-Fi networks. This paper provides an overview of the logistical aspects of implementing a UMN test bed at such a density, including selecting appropriate urban sites; testing and calibrating low-cost, nonstandard equipment; implementing strict quality-assurance/quality-control mechanisms (including metadata); and utilizing preexisting Wi-Fi networks to transmit data. Also included are visualizations of data collected by the network, including data from the July 2013 U.K. heatwave as well as highlighting potential applications. The paper is an open invitation to use the facility as a test bed for evaluating models and/or other nonstandard observation techniques such as those generated via crowdsourcing techniques.