45 resultados para On-line data
Resumo:
This paper addresses the problem of tracking line segments corresponding to on-line handwritten obtained through a digitizer tablet. The approach is based on Kalman filtering to model linear portions of on-line handwritten, particularly, handwritten numerals, and to detect abrupt changes in handwritten direction underlying a model change. This approach uses a Kalman filter framework constrained by a normalized line equation, where quadratic terms are linearized through a first-order Taylor expansion. The modeling is then carried out under the assumption that the state is deterministic and time-invariant, while the detection relies on double thresholding mechanism which tests for a violation of this assumption. The first threshold is based on an approach of layout kinetics. The second one takes into account the jump in angle between the past observed direction of layout and its current direction. The method proposed enables real-time processing. To illustrate the methodology proposed, some results obtained from handwritten numerals are presented.
Resumo:
The cheese industry has continually sought a robust method to monitor milk coagulation. Measurement of whey separation is also critical to control cheese moisture content, which affects quality. The objective of this study was to demonstrate that an online optical sensor detecting light backscatter in a vat could be applied to monitor both coagulation and syneresis during cheesemaking. A prototype sensor having a large field of view (LFV) relative to curd particle size was constructed. Temperature, cutting time, and calcium chloride addition were varied to evaluate the response of the sensor over a wide range of coagulation and syneresis rates. The LFV sensor response was related to casein micelle aggregation and curd firming during coagulation and to changes in curd moisture and whey fat contents during syneresis. The LFV sensor has potential as an online, continuous sensor technology for monitoring both coagulation and syneresis during cheesemaking.
Resumo:
The objective of this study was to investigate a novel light backscatter sensor, with a large field of view relative to curd size, for continuous on-line monitoring of coagulation and syneresis to improve curd moisture content control. A three-level, central composite design was employed to study the effects of temperature, cutting time, and CaCl2 addition on cheese making parameters. The sensor signal was recorded and analyzed. The light backscatter ratio followed a sigmoid increase during coagulation and decreased asymptotically after gel cutting. Curd yield and curd moisture content were predicted from the time to the maximum slope of the first derivative of the light backscatter ratio during coagulation and the decrease in the sensor response during syneresis. Whey fat was affected by coagulation kinetics and cutting time, suggesting curd rheological properties at cutting are dominant factors determining fat losses. The proposed technology shows potential for on-line monitoring of coagulation and syneresis. 2007 Elsevier Ltd. All rights reserved..
Resumo:
The potential of a fibre optic sensor, detecting light backscatter in a cheese vat during coagulation and syneresis, to predict curd moisture, fat loses and curd yield was examined. Temperature, cutting time and calcium levels were varied to assess the strength of the predictions over a range of processing conditions. Equations were developed using a combination of independent variables, milk compositional and light backscatter parameters. Fat losses, curd yield and curd moisture content were predicted with a standard error of prediction (SEP) of +/- 2.65 g 100 g(-1) (R-2 = 0.93), +/- 0.95% (R-2 = 0.90) and +/- 1.43% (R-2 = 0.94), respectively. These results were used to develop a model for predicting curd moisture as a function of time during syneresis (SEP = +/- 1.72%; R-2 = 0.95). By monitoring coagulation and syneresis, this sensor technology could be employed to control curd moisture content, thereby improving process control during cheese manufacture. (c) 2007 Elsevier Ltd. All rights reserved..
Resumo:
A new tropopause definition, based on a flow-dependent blending of the traditional thermal tropopause with one based on potential vorticity, has been developed. The benefits of such a blending algorithm are most apparent in regions with synoptic scale fluctuations between tropical and extratropical airmasses. The properties of the local airmass determine the relative contributions to the location of the blended tropopause, rather than this being determined by a specified function of latitude. Global climatologies of tropopause height, temperature, potential temperature and zonal wind, based on European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA) ERA-Interim data, are presented for the period 1989-2007. Features of the seasonal-mean tropopause are discussed on a global scale, alongside a focus on selected monthly climatologies for the two high latitude regions and the tropical belt. The height differences between climatologies based on ERA-Interim and ERA-40 data are also presented. Key spatial and temporal features seen in earlier climatologies, based mainly on the World Meteorological Organization thermal tropopause definition, are reproduced with the new definition. Tropopause temperatures are consistent with those from earlier climatologies, despite some differences in height in the extratropics.
Resumo:
A new tropopause definition involving a flow-dependent blending of the traditional thermal tropopause with one based on potential vorticity has been developed and applied to the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses (ERA), ERA-40 and ERA-Interim. Global and regional trends in tropopause characteristics for annual and solsticial seasonal means are presented here, with emphasis on significant results for the newer ERA-Interim data for 1989-2007. The global-mean tropopause is rising at a rate of 47 m decade−1 , with pressure falling at 1.0 hPa decade−1 , and temperature falling at 0.18 K decade−1 . The Antarctic tropopause shows decreasing heights,warming,and increasing westerly winds. The Arctic tropopause also shows a warming, but with decreasing westerly winds. In the tropics the trends are small, but at the latitudes of the sub-tropical jets they are almost double the global values. It is found that these changes are mainly concentrated in the eastern hemisphere. Previous and new metrics for the rate of broadening of the tropics, based on both height and wind, give trends in the range 0.9◦ decade−1 to 2.2◦ decade−1 . For ERA-40 the global height and pressure trends for the period 1979-2001 are similar: 39 m decade−1 and -0.8 hPa decade−1. These values are smaller than those found from the thermal tropopause definition with this data set, as was used in most previous studies.
Resumo:
Variational data assimilation in continuous time is revisited. The central techniques applied in this paper are in part adopted from the theory of optimal nonlinear control. Alternatively, the investigated approach can be considered as a continuous time generalization of what is known as weakly constrained four-dimensional variational assimilation (4D-Var) in the geosciences. The technique allows to assimilate trajectories in the case of partial observations and in the presence of model error. Several mathematical aspects of the approach are studied. Computationally, it amounts to solving a two-point boundary value problem. For imperfect models, the trade-off between small dynamical error (i.e. the trajectory obeys the model dynamics) and small observational error (i.e. the trajectory closely follows the observations) is investigated. This trade-off turns out to be trivial if the model is perfect. However, even in this situation, allowing for minute deviations from the perfect model is shown to have positive effects, namely to regularize the problem. The presented formalism is dynamical in character. No statistical assumptions on dynamical or observational noise are imposed.
Resumo:
Variability in the strength of the stratospheric Lagrangian mean meridional or Brewer-Dobson circulation and horizontal mixing into the tropics over the past three decades are examined using observations of stratospheric mean age of air and ozone. We use a simple representation of the stratosphere, the tropical leaky pipe (TLP) model, guided by mean meridional circulation and horizontal mixing changes in several reanalyses data sets and chemistry climate model (CCM) simulations, to help elucidate reasons for the observed changes in stratospheric mean age and ozone. We find that the TLP model is able to accurately simulate multiyear variability in ozone following recent major volcanic eruptions and the early 2000s sea surface temperature changes, as well as the lasting impact on mean age of relatively short-term circulation perturbations. We also find that the best quantitative agreement with the observed mean age and ozone trends over the past three decades is found assuming a small strengthening of the mean circulation in the lower stratosphere, a moderate weakening of the mean circulation in the middle and upper stratosphere, and a moderate increase in the horizontal mixing into the tropics. The mean age trends are strongly sensitive to trends in the horizontal mixing into the tropics, and the uncertainty in the mixing trends causes uncertainty in the mean circulation trends. Comparisons of the mean circulation and mixing changes suggested by the measurements with those from a recent suite of CCM runs reveal significant differences that may have important implications on the accurate simulation of future stratospheric climate.
Resumo:
Question: What are the correlations between the degree of drought stress and temperature, and the adoption of specific adaptive strategies by plants in the Mediterranean region? Location: 602 sites across the Mediterranean region. Method: We considered 12 plant morphological and phenological traits, and measured their abundance at the sites as trait scores obtained from pollen percentages. We conducted stepwise regression analyses of trait scores as a function of plant available moisture (α) and winter temperature (MTCO). Results: Patterns in the abundance for the plant traits we considered are clearly determined by α, MTCO or a combination of both. In addition, trends in leaf size, texture, thickness, pubescence and aromatic leaves and other plant level traits such as thorniness and aphylly, vary according to the life form (tree, shrub, forb), the leaf type (broad, needle) and phenology (evergreen, summer-green). Conclusions: Despite conducting this study based on pollen data we have identified ecologically plausible trends in the abundance of traits along climatic gradients. Plant traits other than the usual life form, leaf type and leaf phenology carry strong climatic signals. Generally, combinations of plant traits are more climatically diagnostic than individual traits. The qualitative and quantitative relationships between plant traits and climate parameters established here will help to provide an improved basis for modelling the impact of climate changes on vegetation and form a starting point for a global analysis of pollen-climate relationships
Resumo:
The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.
Resumo:
The present study compared production and on-line comprehension of definite articles and third person direct object clitic pronouns in Greek-speaking typically developing, sequential bilingual (L2-TD) children and monolingual children with specific language impairment (L1-SLI). Twenty Turkish Greek L2-TD children, 16 Greek L1-SLI children, and 31 L1-TD Greek children participated in a production task examining definite articles and clitic pronouns and, in an on-line comprehension task, involving grammatical sentences with definite articles and clitics and sentences with grammatical violations induced by omitted articles and clitics. The results showed that the L2-TD children were sensitive to the grammatical violations despite low production. In contrast, the children with SLI were not sensitive to clitic omission in the on-line task, despite high production. These results support a dissociation between production and on-line comprehension in L2 children and for impaired grammatical representations and lack of automaticity in children with SLI. They also suggest that on-line comprehension tasks may complement production tasks by differentiating between the language profiles of L2-TD children and children with SLI.