131 resultados para Oil burners.
Resumo:
The objective of the present studies was to determine effects of basal dietary forage source on the response of milk fatty acid composition to an oil supplement based (2:1, respectively, w/w) on soybean oil and marine algae biomass oil high in cis-9, cis-12 C18:2n − 3 and C22:6n − 3, respectively. In Study 1, Hampshire × Dorset ewes (48) were randomly assigned to one of four treatments and 12 pens in a completely randomized design blocked on the basis of lambing date and number of lambs suckled. Control rations (60:40 forage:concentrate, dry matter (DM) basis) based on alfalfa pellets (AP) or corn silage (CS) were fed from lambing. Beginning at 22 days postpartum, three pens of ewes fed AP and three pens of ewes fed CS were supplemented with oil (30 g/kg of ration DM) in place of corn meal. Average ewe DM intake (DMI) and average daily gain (ADG) were measured weekly. Milk yield and composition were measured at 42 days postpartum. DMI was lower (P<0.02) for CS and for oil, but milk yield was not affected by forage source or oil supplementation. Milk fat content was higher for oil (P<0.10) and milk protein content was higher for AP (P<0.04). Total CLA concentration (g/100 g fatty acids) increased (P<0.01) with CS and oil, and the response to oil was greater for AP (P<0.04). Similarly, total trans-C18:1 and C22:6ω−3 concentrations were higher for CS and oil, but the response to oil was greater for CS (P<0.06 and P<0.01, respectively). In Study 2, the experiment was repeated using alfalfa haylage (AH) instead of AP. The DMI decreased (P<0.05) with oil feeding, but was not affected by forage source. Milk yield was decreased by feeding oil with AH, but not by feeding oil with CS (P<0.03). Milk fat content tended to be increased by feeding oil with AH, but tended to be decreased by feeding oil with CS (P<0.08). Total CLA concentration was increased (P<0.01) for AH versus CS and by oil, and the response to oil supplementation was greater for AH (P<0.01). In contrast, total trans-C18:1 concentration was higher for CS versus AH, with a greater response to oil for CS (P<0.05). Feeding marine oil increased the C22:6ω−3 (P<0.01) concentration, and the response was greater for AH (P<0.04). To further characterize the response of milk fat composition to dietary oil in ewes, a third study used six pens of three ewes each assigned to either the control CS diet used for Study 2 or the same diet supplemented with 45 g/kg (DM basis) of the oil mixture. Feeding oil had no effect on DMI, milk yield or milk fat concentration, but again increased (P<0.001) total trans-C18:1 and C22:6ω−3 concentrations and numerically increased (114%) total CLA concentration. Milk fatty acid composition responses to supplemental vegetable and marine oils were affected by forage source. Milk trans-C18:1 concentration was higher when CS was fed in Studies 1 and 2, but the effect of forage species on CLA concentration differed between studies, which may reflect differences in diet PUFA content and consumption, as well as amounts of dietary starch and fiber consumed. Despite large increases in trans-C18:1 concentration, milk fat content was not decreased by feeding unsaturated oils to ewes, even at diet levels of 45 g/kg of ration DM.
Resumo:
Based on the potential benefits of cis-9, trans-11 conjugated linoleic acid (CLA) for human health, there is a need to develop effective strategies for enhancing milk fat CLA concentrations. Levels of cis-9, trans-11 CLA in milk can be increased by supplements of fish oil (FO) and sunflower oil (SO), but there is considerable variation in the response. Part of this variance may reflect time-dependent ruminal adaptations to high levels of lipid in the diet, which lead to alterations in the formation of specific biohydrogenation intermediates. To test this hypothesis, 16 late lactation Holstein-British Friesian cows were used in a repeated measures randomized block design to examine milk fatty acid composition responses to FO and SO in the diet over a 28-d period. Cows were allocated at random to corn silage-based rations (8 per treatment) containing 0 (control) or 45 g of oil supplement/ kg of dry matter consisting (1:2; wt/wt) of FO and SO (FSO), and milk composition was determined on alternate days from d 1. Compared with the control, the FSO diet decreased mean dry matter intake (21.1 vs. 17.9 kg/d), milk fat (47.7 vs. 32.6 g/kg), and protein content (36.1 vs. 33.3 g/kg), but had no effect on milk yield (27.1 vs. 26.4 kg/d). Reductions in milk fat content relative to the FSO diet were associated with increases in milk trans-10 18: 1, trans-10, cis-12 CLA, and trans-9, cis-11 CLA concentrations (r(2) = 0.74, 0.57, and 0.80, respectively). Compared with the control, the FSO diet reduced milk 4: 0 to 18: 0 and cis 18:1 content and increased trans 18:1, trans 18:2, cis-9, trans-11 CLA, 20: 5 n-3, and 22: 6 n-3 concentrations. The FSO diet caused a rapid elevation in milk cis-9, trans-11 CLA content, reaching a maximum of 5.37 g/100 g of fatty acids on d 5, but these increases were transient, declining to 2.35 g/100 g of fatty acids by d 15. They remained relatively constant thereafter. Even though concentrations of trans-11 18: 1 followed the same pattern of temporal changes as cis-9, trans-11 CLA, the total trans 18:1 content of FSO milk was unchanged because of the concomitant increases in the concentration of other isomers (Delta(4-10) and Delta(12-15)), predominantely trans-10 18:1. In conclusion, supplementing diets with FSO enhances milk fat cis-9, trans-11 CLA content, but the high level of enrichment declines because of changes in ruminal biohydrogenation that result in trans-10 replacing trans-11 as the major 18:1 biohydrogenation intermediate formed in the rumen.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly'' fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O-3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O-3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O-3 concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.
Resumo:
An improved method for the detection of pressed hazelnut oil in admixtures with virgin olive oil by analysis of polar components is described. The method. which is based on the SPE-based isolation of the polar fraction followed by RP-HPLC analysis with UV detection. is able to detect virgin olive oil adulterated with pressed hazelnut oil at levels as low as 5% with accuracy (90.0 +/- 4.2% recovery of internal standard), good reproducibility (4.7% RSD) and linearity (R-2: 0.9982 over the 5-40% adulteration range). An international ring-test of the developed method highlighted its capability as 80% of the samples were, on average, correctly identified despite the fact that no training samples were provided to the participating laboratories. However, the large variability in marker components among the pressed hazelnut oils examined prevents the use of the method for quantification of the level of adulteration. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
Based on the potential benefits of cis-9, trans- 11 conjugated linoleic acid (CLA) for human health there is a need to develop effective strategies for enhancing milk fat CLA concentrations. In this experiment, the effect of forage type and level of concentrate in the diet on milk fatty acid composition was examined in cows given a mixture of fish oil and sunflower oil. Four late lactation Holstein-British Friesian cows were used in a 4 x 4 Latin-square experiment with a 2 x 2 factorial arrangement of treatments and 21-day experimental periods. Treatments consisted of grass (G) or maize (M) silage supplemented with low (L) or high (H) levels of concentrates (65: 35 and 35: 65; forage: concentrate ratio, on a dry matter (DM) basis, respectively) offered as a total mixed ration at a restricted level of intake (20 kg DM per day). Lipid supplements (30 g/kg DM) containing fish oil and sunflower oil (2: 3 w/w) were offered during the last 14 days of each experimental period. Treatments had no effect on total DM intake, milk yield, milk constituent output or milk fat content, but milk protein concentrations were lower (P<0.05) for G than M diets (mean 43.0 and 47.3 g/kg, respectively). Compared with grass silage, milk fat contained higher (P<0.05) amounts Of C-12: 0, C-14: 0, trans C-18:1 and long chain >= C20 (n-3) polyunsaturated fatty acids (PUFA) and lower (P<0.05) levels Of C-18:0 and trans C-18:2 when maize silage was offered. Increases in the proportion of concentrate in the diet elevated (P<0.05) C-18:2 (n-6) and long chain >= C20 (n-3) PUFA content, but reduced (P<0.05) the amount Of C-18:3 (n-3). Concentrations of trans-11 C-18:1 in milk were independent of forage type, but tended (P<0.10) to be lower for high concentrate diets (mean 7.2 and 4.0 g/100 g fatty acids, for L and H respectively). Concentrations of trans-10 C-18:1 were higher (P<0.05) in milk from maize compared with grass silage (mean 10.3 and 4.1 g/100 g fatty acids, respectively) and increased in response to high levels of concentrates in the diet (mean 4.1 and 10.3 g/100 g fatty acids, for L and H, respectively). Forage type had no effect (P>0.05) on total milk conjugated linoleic acid (CLA) (2.7 and 2.8 g/100 g fatty acids, for M and G, respectively) or cis-9, trans-11 CLA content (2.2 and 2.4 g/100 g fatty acids). Feeding high concentrate diets tended (P<0.10) to decrease total CLA (3.3 and 2.2 g/100 g fatty acids, for L and H, respectively) and cis-9, trans-11 CLA (2.9 and 1/7 g/100 g fatty acids) concentrations and increase milk trans-9, cis-11 CLA and trans-10, cis-12 CLA content. In conclusion, the basal diet is an important determinant of milk fatty acid composition when a supplement of fish oil and sunflower oil is given.
Resumo:
Mechanisms underlying milk fat conjugated linoleic acid (CLA) responses to supplements of fish oil were investigated using five lactating cows each fitted with a rumen cannula in a simple experiment consisting of two consecutive 14-day experimental periods. During the first period cows were offered 18 kg dry matter (DM) per day of a basal (B) diet formulated from grass silage and a cereal based-concentrate (0.6 : 0.4; forage : concentrate ratio, on a DM basis) followed by the same diet supplemented with 250 g fish oil per day (FO) in the second period. The flow of non-esterified fatty acids leaving the rumen was measured using the omasal sampling technique in combination with a triple indigestible marker method based on Li-Co-EDTA, Yb-acetate and Cr-mordanted straw. Fish oil decreased DM intake and milk yield, but had no effect on milk constituent content. Milk fat trans-11C(18:1), total trans-C-18:1, cis-9 trans-11 CLA, total CLA, C-18 :2 (n- 6) and total C-18:2 content were increased in response to fish oil from 1.80, 4.51, 0.39, 0. 56, 0.90 and 1.41 to 9.39, 14.39, 1.66, 1.85, 1.25 and 4.00 g/100 g total fatty acids, respectively. Increases in the cis-9, trans-11 isomer accounted for proportionately 0.89 of the CLA response to fish oil. Furthermore, fish oil decreased the flow of C-18:0 (283 and 47 g/day for B and FO, respectively) and increased that of trans-C-18:1 fatty acids entering the omasal canal (38 and 182 g/day). Omasal flows of trans-C-18:1 acids with double bonds in positions from delta-4 to -15 inclusive were enhanced, but the effects were isomer dependent and primarily associated with an increase in trans-11C(18:1) leaving the rumen (17.1 and 121.1 g/day for B and FO, respectively). Fish oil had no effect on total (4.36 and 3.50 g/day) or cis-9, trans-11 CLA (2.86 and 2.08 g/day) entering the omasal canal. Flows of cis-9, trans-11 CLA were lower than the secretion of this isomer in milk. Comparison with the transfer of the trans-9, trans-11 isomer synthesized in the rumen suggested that proportionately 0.66 and 0.97 of cis-9, trans-11 CLA was derived from endogenous conversion of trans-11 C-18:1 in the mammary gland for B and FO, respectively. It is concluded that fish oil enhances milk fat cis-9, trans-11 CLA content in response to increased supply of trans-11 C-18:1 that arises from an inhibition of trans C-18:1 reduction in the rumen.
Resumo:
Objective: To determine whether consumption of five portions of fruit and vegetables per day reduces the enhancement of oxidative stress induced by consumption of fish oil. Subjects: A total of 18 free-living healthy smoking volunteers, aged 18-63 y, were recruited by posters and e-mail in The University of Reading, and by leaflets in local shops. Design: A prospective study. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Intervention: All subjects consumed a daily supplement of 4 x 1 g fish oil capsules for 9 weeks. After 3 weeks, they consumed an additional five portions of fruits and vegetables per day, and then they returned to their normal diet for the last 3 weeks of the study. Fasting blood samples were taken at the ends of weeks 0, 3, 6 and 9. Results: The plasma concentrations of ascorbic acid, lutein, beta-cryptoxanthin, alpha-carotene and beta-carotene all significantly increased when fruit and vegetable intake was enhanced (P<0.05). Plasma concentrations of α-tocopherol, retinol and uric acid did not change significantly during the period of increased fruit and vegetable consumption. Plasma oxidative stability, assessed by the oxygen radical absorbance capacity (ORAC) assay, also increased from weeks 3-6 (P<0.001) but not in association with increases in measured antioxidants. Lag phase before oxidation of low-density lipoprotein (LDL) significantly decreased in the first 3 weeks of the study, reflecting the incorporation of EPA and DHA into LDL (P<0.0001). Subsequent enhanced fruit and vegetable consumption significantly reduced the susceptibility of LDL to oxidation (P<0.005). Conclusion: Fish oil reduced the oxidative stability of plasma and LDL, but the effects were partially offset by the increased consumption of fruit and vegetables.
Resumo:
The antioxidant activity and interactions with copper of four olive oil phenolic compounds, namely oleuropein, hydroxytyrosol, 3,4- dihydroxyphenylethanol- elenolic acid ( 1), and 3,4- dihydroxyphenyl-ethanolelenolic acid dialdehyde ( 2), in olive oil and oil- in- water emulsions stored at 60 degrees C were studied. All four phenolic compounds significantly extended the induction time of lipid oxidation in olive oil with the order of activity being hydroxytyrosol > compound 1 > compound 2 > oleuropein > alpha- tocopherol; but in the presence of Cu( II), the stability of oil samples containing phenolic compounds decreased by at least 90%, and the antioxidant activity of hydroxytyrosol and compounds 1 and 2 became similar. In oil- in- water emulsions prepared from olive oil stripped of tocopherols, hydroxytyrosol enhanced the prooxidant effect of copper at pH 5.5 but not at pH 7.4. The stability of samples containing copper at pH 5.5 was not significantly different if oleuropein was present from that of the control. Oleuropein at pH 7.4, and compounds 1 and 2 at both pH values tested, reduced the prooxidant effect of copper. The lower stability and the higher reducing capacity of all compounds at pH 7.4 could not explain the higher stability of emulsions containing phenolic compounds at this pH value. However, mixtures containing hydroxytyrosol or oleuropein with copper showed higher 1,1-diphenyl- 2- picrylhydrazyl radical scavenging activity at pH 7.4 than at pH 5.5. Moreover, the compound 2- copper complex showed higher radical scavenging activity then the uncomplexed compound at pH 5.5. It can be concluded that the formation of a copper complex with radical scavenging activity is a key step in the antioxidant action of the olive oil phenolic compounds in an emulsion containing copper ions.
Resumo:
The antioxidant activity of hydroxytyrosol, hydroxytyrosol acetate, oleuropein, 3,4-dihydroxyphenylelenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenyielenolic acid dialdehyde (3,4-DHPEA-EDA) towards oxidation initiated by 2,2'-azobis (2-amidinopropane) hydrochloride in a soybean phospholipid liposome system was studied. The antioxidant activity of these olive oil phenols was similar and the duration of the lag phase was almost twice that of alpha-tocopherol. Trolox(R), a water-soluble analogue of alpha-tocopherol, showed the worst antioxidant activity. However, oxidation before the end of the lag phase was inhibited less effectively by the olive oil phenols than by alpha-tocopherol and Trolox(R). Synergistic effects (11-20% increase in lag phase) were observed in the antioxidant activity of combinations of alpha-tocopherol with olive oil phenols both with and without ascorbic acid. Fluorescence anisotropy of probes and fluorescence quenching studies showed that the olive oil phenols did not penetrate into the membrane, but their effectiveness as antioxidants showed they were associated with the surface of the phospholipid bilayer. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The ferric complexing capacity of four phenolic compounds, occurring in olives and virgin olive oil, namely, oleuropein, hydroxytyrosol, 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA), and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA), and their stability in the presence of ferric ions were studied. At pH 3.5, all compounds formed a reversible 1:1 complex with ferric ions, but hydroxytyrosol could also form complexes containing > 1 ferric ion per phenol molecule. At pH 5.5, the complexes between ferric ions and 3,4-DHPEA-EA or 3,4-DHPEA-EDA were relatively stable, indicating that the antioxidant activity of 3,4-DHPEA-EA or 3,4-DHPEA-EDA at pH 5.5 is partly due to their metal-chelating activity. At pH 7.4, a complex containing > 1 ferric ion per phenol molecule was formed with hydroxytyrosol. Oleuropein, 3,4-DHPEA-EA, and 3,4-DHPEA-EDA also formed insoluble complexes at this pH. There was no evidence for chelation of Fe(II) by hydroxytyrosol or its derivatives. At all pH values tested, hydroxytyrosol was the most stable compound in the absence of Fe(III) but the most sensitive to the presence of Fe(III).
Resumo:
The possibility of preparing olive oil, with the same nutritional value and stability characteristics found in virgin olive oil, by the enrichment of refined olive oil with olive leaf polyphenols was studied. To obtain antioxidant phenols similar to those found in virgin olive oil, these components were extracted from the leaves of several olive cultivars from the Northern region of Portugal, namely, Carrasca, Ripa, Negruche, Cordovil, Verdeal, Madural, and Bical cultivars, under several conditions. The concentration of a leaf extract required for addition to refined olive oil to obtain the same stability as virgin olive oil was determined. The extract from 1 kg of leaves was sufficient to fortify 50-320 L of refined olive oil to a similar stability as a virgin olive oil sample depending on the metal concentration of the oil, cultivar, and time of the year when the leaves were picked.
Resumo:
Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption. Maslinic acid, oleanolic acid, erythrodiol, and uvaol are pentacyclic triterpenes, found in the non-glyceride fraction of orujo oil, which have previously been reported to have anti-inflammatory properties. In the present work, we investigated the effect of these minor components on pro-inflammatory cytokine production by human peripheral blood mononuclear cells in six different samples. Uvaol, erythrodiol, and oleanolic acid significantly decreased IL-1 beta and IL-6 production in a dose-dependent manner. All three compounds significantly reduced TNF-alpha production at 100 mu M; however, at 10 mu M, uvaol and oleanolic acid enhanced the generation of TNF-alpha. In contrast, maslinic acid did not significantly alter the concentration of those cytokines, with the exception of a slight inhibitory effect at 100 mu M. All four triterpenes inhibited production of I-309, at 50 mu M and 100 mu M. However, uvaol enhanced I-309 production at 10 mu M. The triterpenic dialcohols had a similar effect on MIG production. In conclusion, this study demonstrates that pentacyclic triterpenes in orujo oil exhibit pro- and anti-inflammatory properties depending on chemical structure and dose, and may be useful in modulating the immune response. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The antioxidant activity of an extract from Teaw (Cratoxylum formosum Dyer) leaves was studied in soybean oil and soybean oil-in-water emulsions. Samples containing the extract or reference antioxidants including chlorogenic acid, which comprises 60% of the Teaw extract, were stored at 60 degrees C and analyzed periodically for peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) to allow both hydroperoxides and hydroperoxide degradation products to be monitored. Chlorogenic acid and the Teaw extract were more effective than a-tocopherol in inhibiting lipid oxidation in bulk oil but were less effective in an oil-in-water emulsion in accordance with the polar paradox. The PV/TBARS ratio for oil samples containing chlorogenic acid was higher than for alpha-tocopherol and BHT because chlorogenic acid inhibits both hydroperoxide formation by radical scavenging and hydroperoxide decomposition by metal chelation. The importance of the metal-chelating activity in retarding hydroperoxide decomposition was confirmed by studying the decomposition of oil samples containing added ferric ions. The PV/TBARS ratio was higher for citric acid than for (x-tocopherol in the presence of added ferric chloride, but the order was reversed in samples lacking ferric chloride. Samples containing added chlorogenic acid gave the highest PV/TBARS ratios both in the presence and absence of ferric ions. The PV/TBARS ratios for the samples containing antioxidants fell rapidly to lower values in a soybean oil-in-water emulsion than in the soybean oil. This was due to increased hydroperoxide decomposition in the emulsion at the same PV. The Teaw extract contained 12% oil-soluble components, which contributed to a slightly higher oil-water partition coefficient than that of chlorogenic acid. The antioxidant activity of the aqueous phase of the Teaw extract was reduced more than that of chlorogenic acid by partitioning of the oil-soluble components into oil, which showed that the less-polar components contributed to the antioxidant activity of the Teaw extract in aqueous media.