46 resultados para Occupant Kinematics.
Resumo:
This paper develops a novel method of actuation for robotic hands. The solution employs Bowden cable routed to each joint as the means by which the finger is actuated. The use of Bowden cable is shown to be feasible for this purpose, even with the changing frictional forces associated with it's use. This method greatly simplifies the control of the hand by removing the coupling between joints, and allows for direct and accurate translation between the joints and the motors driving the Bowden wires. The design also allows for two degrees of freedom (with the same centre of rotation) to be realised in the largest knuckle of each finger, meaning biological finger kinematics are more accurately emulated.
Resumo:
This paper describes a structural design technique for rehabilitation robot intended for upper-limb post-stroke therapy. First, a novel approach to a rehabilitation robot is proposed and the features of the robot are explained. Second, the direct kinematics and the inverse kinematics of the proposed robot structure are derived. Finally, a mechanical design procedure is explained that achieves a compromise between the required motion range and assuring the workspace safety. The suitability of a portable escort type structure for upper limb rehabilitation of both acute and chronic stroke is discussed
Resumo:
An indoor rowing machine has been modified for functional electrical stimulation (FES) assisted rowing exercise in paraplegia. To perform the rowing manoeuvre successfully, however, the voluntarily controlled upper body movements must be co-ordinated with the movements of the electrically stimulated paralysed legs. To achieve such co-ordination, an automatic FES controller was developed that employs two levels of hierarchy. At the upper level, a finite state controller identifies the state or phase of the rowing cycle and activates the appropriate lower-level controller, in which electrical stimulation to the paralysed leg muscles is applied with reference to switching curves representing the desired seat velocity as a function of the seat position. In a pilot study, the hierarchical control of FES rowing was shown to be intuitive, reliable and easy to use. Compared with open-loop control of stimulation, all three variants of the closed-loop switching curve controllers used less muscle stimulation per rowing cycle (73% of the open-loop control on average). Further, the closed-loop controller that used switching curves derived from normal rowing kinematics used the lowest muscle stimulation (65% of the open-loop control) and was the most convenient to use for the client.
Resumo:
This paper describes a novel method of actuation for robotic hands. The solution employs a Bowden cable routed to each joint. The use of a Bowden cable is shown to be feasible for this purpose, ever, with the changing frictional forces associated with it. This method greatly simplifies the control of the hand by removing the coupling between joints, and provides for direct and accurate translation between the joints and the servo motors driving the cables. The design also allows for two degrees of freedom with the same centre of rotation to be realized in the largest knuckle of each finger; thus biological finger kinematics are more closely emulated.
Marker placement to describe the wrist movements during activities of daily living in cyclical tasks
Resumo:
Objective. To describe the wrist kinematics during movement through free range of motion and activities of daily living using a cyclical task. Design. The wrist angles were initially calculated in a calibration trial and then in two selected activities of daily living (jar opening and carton pouring). Background. Existing studies which describe the wrist movement do not address the specific application of daily activities. Moreover, the data presented from subject to subject may differ simply because of the non-cyclical nature of the upper limbs movements. Methods. The coordinates of external markers attached to bone references on the forearm and dorsal side of the hand were obtained using an optical motion capture system. The wrist angles were derived from free motion trials and successively calculated in four healthy subjects for two specific cyclical daily activities (opening a jar and pouring from a carton). Results. The free motions trial highlighted the interaction between the wrist angles. Both the jar opening and the carton pouring activity showed a repetitive pattern for the three angles within the cycle length. In the jar-opening task, the standard deviation for the whole population was 10.8degrees for flexion-extension, 5.3degrees for radial-ulnar deviation and 10.4degrees for pronation-supination. In the carton-pouring task, the standard deviation for the whole population was 16.0degrees for flexion-extension, 3.4degrees for radial-ulnar deviation and 10.7degrees for pro nation-supination. Conclusion. Wrist kinematics in healthy subjects can be successfully described by the rotations about the axes of marker-defined coordinates systems during free range of motion and daily activities using cyclical tasks.
Resumo:
This paper presents results for thermal comfort assessment in non-uniform thermal environments. Three types of displacement ventilation (DV) units that created stratified condition in an environmental test chamber have been selected to carry out the thermal comfort assessment: a flat diffuser (DV1), semi-circular diffuser (DV2), and floor swirl diffuser (DV3). The CBE (Center for the Built Environment at Berkeley) comfort model was implemented in this study to assess the occupant’s thermal comfort for the three DV types. The CBE model predicted the occupant’s mean skin as well as local skin temperatures very well when compared with measurements found in the literature, while it underestimated the occupant’s core temperature. The predicted occupant’s thermal sensation and thermal comfort for the case of (DV2) were the best. Therefore, the semi-circular diffuser (DV2) provided better thermal comfort for the occupant in comparison with the other two DV types.
Resumo:
The main objective is to develop methods that automatically generate kinematic models for the movements of biological and robotic systems. Two methods for the identification of the kinematics are presented. The first method requires the elimination of the displacement variables that cannot be measured while the second method attempts to estimate the changes in these variables. The methods were tested using a planar two-revolute-joint linkage. Results show that the model parameters obtained agree with the actual parameters to within 5%. Moreover, the methods were applied to model head and neck movements in the sagittal plane. The results indicate that these movements are well modeled by a two-revolute-joint system. A spatial three-revolute-joint model was also discussed and tested.
Resumo:
The main objective is to generate kinematic models for the head and neck movements. The motivation comes from our study of individuals with quadriplegia and the need to design rehabilitation aiding devices such as robots and teletheses that can be controlled by head-neck movements. It is then necessary to develop mathematical models for the head and neck movements. Two identification methods have been applied to study the kinematics of head-neck movements of able-body as well as neck-injured subjects. In particular, sagittal plane movements are well modeled by a planar two-revolute-joint linkage. In fact, the motion in joint space seems to indicate that sagittal plane movements may be classified as a single DOF motion. Finally, a spatial three-revolute-joint system has been employed to model 3D head-neck movements.
Resumo:
The problem of a manipulator operating in a noisy workspace and required to move from an initial fixed position P0 to a final position Pf is considered. However, Pf is corrupted by noise, giving rise to Pˆf, which may be obtained by sensors. The use of learning automata is proposed to tackle this problem. An automaton is placed at each joint of the manipulator which moves according to the action chosen by the automaton (forward, backward, stationary) at each instant. The simultaneous reward or penalty of the automata enables avoiding any inverse kinematics computations that would be necessary if the distance of each joint from the final position had to be calculated. Three variable-structure learning algorithms are used, i.e., the discretized linear reward-penalty (DLR-P, the linear reward-penalty (LR-P ) and a nonlinear scheme. Each algorithm is separately tested with two (forward, backward) and three forward, backward, stationary) actions.
Resumo:
Lateral epicondylitis (LE) is hypothesized to occur as a result of repetitive, strenuous and abnormal postural activities of the elbow and wrist. There is still a lack of understanding of how wrist and forearm positions contribute to this condition during common manual tasks. In this study the wrist kinematics and the wrist extensors’ musculotendon patterns were investigated during a manual task believed to elicit LE symptoms in susceptible subjects. A 42-year-old right-handed male, with no history of LE, performed a repetitive movement involving pushing and turning a spring-loaded mechanism. Motion capture data were acquired for the upper limb and an inverse kinematic and dynamic analysis was subsequently carried out. Results illustrated the presence of eccentric contractions sustained by the extensor carpi radialis longus (ECRL), together with an almost constant level of tendon strain of both extensor carpi radialis brevis (ECRB) and extensor digitorum communis lateral (EDCL) branch. It is believed that these factors may partly contribute to the onset of LE as they are both responsible for the creation of microtears at the tendons’ origins. The methodology of this study can be used to explore muscle actions during movements that might cause or exacerbate LE.
Resumo:
The peak congestion of the European grid may create significant impacts on system costs because of the need for higher marginal cost generation, higher cost system balancing and increasing grid reinforcement investment. The use of time of use rates, incentives, real time pricing and other programmes, usually defined as Demand Side Management (DSM), could bring about significant reductions in prices, limit carbon emissions from dirty power plants, and improve the integration of renewable sources of energy. Unlike previous studies on elasticity of residential electricity demand under flat tariffs, the aim of this study is not to investigate the known relatively inelastic relationship between demand and prices. Rather, the aim is to assess how occupancy levels vary in different European countries. This reflects the reality of demand loads, which are predominantly determined by the timing of human activities (e.g. travelling to work, taking children to school) rather than prices. To this end, two types of occupancy elasticity are estimated: baseline occupancy elasticity and peak occupancy elasticity. These represent the intrinsic elasticity associated with human activities of single residential end-users in 15 European countries. This study makes use of occupancy time-series data from the Harmonised European Time Use Survey database to build European occupancy curves; identify peak occupancy periods; draw time use demand curves for video and TV watching activity; and estimate national occupancy elasticity levels of single-occupant households. Findings on occupancy elasticities provide an indication of possible DSM strategies based on occupancy levels and not prices.
Resumo:
Occupants’ behaviour when improving the indoor environment plays a significant role in saving energy in buildings. Therefore the key step to reducing energy consumption and carbon emissions from buildings is to understand how occupants interact with the environment they are exposed to in terms of achieving thermal comfort and well-being; though such interaction is complex. This paper presents a dynamic process of occupant behaviours involving technological, personal and psychological adaptations in response to varied thermal conditions based on the data covering four seasons gathered from the field study in Chongqing, China. It demonstrates that occupants are active players in environmental control and their adaptive responses are driven strongly by ambient thermal stimuli and vary from season to season and from time to time, even on the same day. Positive, dynamic, behavioural adaptation will help save energy used in heating and cooling buildings. However, when environmental parameters cannot fully satisfy occupants’ requirements, negative behaviours could conflict with energy saving. The survey revealed that about 23% of windows are partly open for fresh air when air-conditioners are in operation in summer. This paper addresses the issues how the building and environmental systems should be designed, operated and managed in a way that meets the requirements of energy efficiency without compromising wellbeing and productivity.
Resumo:
A carbon reduction strategy for a historic Grade 1 listed office building in London is presented. The study evaluates the impact of49 different carbon abatement options, quantified using building simulation software, auditing procedures and qualitative methods. The impact of each option is assessed against three criteria: carbon abatement potential, practicality and cost. The strategy comprises of18interventions,integrated within 12 key recommendations. Accumulative reduction of 37% (below a 2009 carbon emissions baseline)appears achievable and only feasible with heavy reliance on changes in occupant behaviour. This theme appears central in achieving realistic and significant carbon savings from listed buildings, where planning constraints relinquish potential for major building fabric alteration and renewable energy installations.
Resumo:
This paper fully describes a nation-wide field study on building thermal environment and thermal comfort of occupant, which was carried out in summer 2005 and in winter 2006 respectively in China, illustrating the adaptive strategies adopted by occupants in domestic buildings in China. According to the climate division in China, the buildings in Beijing (BJ), Shanghai (SH), Wuhan (WH) and Chongqing (CQ), Guangzhou (GZ), Kunming (KM), were selected as targets which are corresponding to cold zone, hot summer and cold winter zone (SWC-SH, WH, CQ), hot summer and warm winter zone and temperate zone, respectively. The methodology used in the field study is the combination of subjective questionnaire regarding thermal sensation and adaptive approaches and physical environmental monitoring including indoor air temperature and relative humidity. A total of 1671 subjects participate in this investigation with more than 80% response rate in all surveyed cities. Both physiological and non-physiological factors (behavioural and psychological adaptations) have been analysed.
Resumo:
The past decade has witnessed a sharp increase in published research on energy and buildings. This paper takes stock of work in this area, with a particular focus on construction research and the analysis of non-technical dimensions. While there is widespread recognition as to the importance of non-technical dimensions, research tends to be limited to individualistic studies of occupants and occupant behavior. In contrast, publications in the mainstream social science literature display a broader range of interests, including policy developments, structural constraints on the diffusion and use of new technologies and the construction process itself. The growing interest of more generalist scholars in energy and buildings provides an opportunity for construction research to engage a wider audience. This would enrich the current research agenda, helping to address unanswered problems concerning the relatively weak impact of policy mechanisms and new technologies and the seeming recalcitrance of occupants. It would also help to promote the academic status of construction research as a field. This, in turn, depends on greater engagement with interpretivist types of analysis and theory building, thereby challenging deeply ingrained views on the nature and role of academic research in construction.