31 resultados para OXIDATIVE STRESS-RESPONSE
Resumo:
Although in developing countries an apolipoprotein E4 (apoE4) genotype may offer an evolutionary advantage, as it has been shown to offer protection against certain infectious disease, in Westernised societies it is associated with increased morbidity and mortality, and represents a significant risk factor for cardiovascular disease, late-onset Alzheimer's disease and other chronic disorders. ApoE is an important modulator of many stages of lipoprotein metabolism and traditionally the increased risk was attributed to higher lipid levels in E4 carriers. However, more recent evidence demonstrates the multifunctional nature of the apoE protein and the fact that the impact of genotype on disease risk may be in large part due to an impact on oxidative status or the immunomodulatory/anti-inflammatory properties of apoE. An increasing number of studies in cell lines, targeted replacement rodents and human volunteers indicate higher oxidative stress and a more pro-inflammatory state associated with the F,4 allele. The impact of genotype on the antioxidant and immunomodulatory/anti-inflammatory properties of apoE is the focus of the current review. Furthermore, current information on the impact of environment (diet, exercise, smoking status, alcohol) on apoE genotype-phenotype associations are discussed with a view to identifying particular lifestyle strategies that could be adapted to counteract the 'at-risk' E4 genotype.
Resumo:
The aetiology of apoE4 genotype-Alzheimer's disease (AD) association are complex. The current study emphasizes the impact of apoE genotype and potential beneficial effects of vitamin E (VE) in relation to oxidative stress. Agonist induced neuronal cell death was examined 1) in the presence of conditioned media containing equal amounts of apoE3 or apoE4 obtained from stably transfected macrophages, and 2) after pretreatment with alpha- and gamma-tocopherol, and -tocotrienol. ApoE3 and apoE4 transgenic mice were fed a diet poor or rich in VE to study the interplay of both apoE genotype and VE status, on membrane lipid peroxidation, antioxidative enzyme activity and glutathione levels in the brain. Cytotoxicity of hydrogen peroxide and glutamate was higher in neuronal cells cultured with apoE4 than apoE3 conditioned media. VE pre-treatment of neurons counteracted the cytotoxicity of a peroxide challenge but not of nitric oxide. No significant effects of apoE genotype or VE supplementation were observed on lipid peroxidation or antioxidative status in the brain of apoE3 and apoE4 mice. VE protects against oxidative insults in vitro, however, no differences in brain oxidative status were observed in mice. Unlike in cultured cells, apoE4 may not contribute to higher neuronal oxidative stress in the brain of young targeted replacement mice.
Resumo:
The aim of this study was to investigate the potential of quercetin and two of its "in vivo" metabolites, 3'-O-methyl quercetin and 4'-O-methyl quercetin, to protect H9c2 cardiomyoblasts against H2O2-induced oxidative stress. As limited data are available regarding the potential uptake and cellular effects of quercetin and its metabolites in cardiac cells, we have evaluated the cellular association/uptake of the three compounds and their involvement in the modulation of two pro-survival signalling pathways: ERK1/2 signalling cascade and PI3K/Akt pathway. The three flavonols associated with cells to differing extents. Quercetin and its two O-methylated metabolites were able to reduce intracellular ROS production but only quercetin was able to counteract H2O2 cell damage, as measured by MTT reduction assay, caspase-3 activity and DNA fragmentation assays. Furthermore, only quercetin was observed to modulate pro-survival signalling through ERK1/2 and PI3K/Akt pathway. In conclusion we have demonstrated that quercetin, but not its O-methylated metabolites, exerts protective effects against H2O2 cardiotoxicity and that the mechanism of its action involves the modulation of PI3K/Akt and ERK1/2 signalling pathways. (c) 2006 Elsevier Masson SAS. All rights reserved.
Resumo:
Background: The importance of understanding which environmental and biological factors are involved in determining individual differences in physiological response to stress is widely recognized, given the impact that stress has on physical and mental health. Methods: The child-mother attachment relationship and some genetic polymorphisms (5-HTTLPR, COMT and GABRA6) were tested as predictors of salivary cortisol and alpha amylase concentrations, two biomarkers of hypothalamic-pituitary-adrenocortical (HPA) axis and sympathetic adrenomedullary (SAM) system activity, during the Strange Situation (SS) procedure in a sample of more than 100 healthy infants, aged 12 to 18 months. Results: Individual differences in alpha amylase response to separation were predicted by security of attachment in interaction with 5-HTTLPR and GABRA6 genetic polymorphisms, whereas alpha amylase basal levels were predicted by COMT x attachment interaction. No significant effect of attachment, genetics and their interaction on cortisol activity emerged. Conclusions: These results help to disentangle the role played by both genetic and environmental factors in determining individual differences in stress response in infancy. The results also shed light on the suggestion that HPA and SAM systems are likely to have different characteristic responses to stress.
Resumo:
Subjects with the metabolic syndrome (MetS) have enhanced oxidative stress and inflammation. Dietary fat quality has been proposed to be implicated in these conditions. We investigated the impact of four diets distinct in fat quantity and quality on 8-iso-PGF2α (a major F2-isoprostane and oxidative stress indicator), 15-keto-13,14-dihydro-PGF2α (15-keto-dihydro-PGF2α, a major PGF2α metabolite and marker of cyclooxygenase-mediated inflammation) and C-reactive protein (CRP). In a 12-week parallel multicentre dietary intervention study (LIPGENE), 417 volunteers with the MetS were randomly assigned to one of the four diets: two high-fat diets (38 % energy (%E)) rich in SFA or MUFA and two low-fat high-complex carbohydrate diets (28 %E) with (LFHCC n-3) or without (LFHCC) 1·24 g/d of very long chain n-3 fatty acid supplementation. Urinary levels of 8-iso-PGF2α and 15-keto-dihydro-PGF2α were determined by RIA and adjusted for urinary creatinine levels. Serum concentration of CRP was measured by ELISA. Neither concentrations of 8-iso-PGF2α and 15-keto-dihydro-PGF2α nor those of CRP differed between diet groups at baseline (P>0·07) or at the end of the study (P>0·44). Also, no differences in changes of the markers were observed between the diet groups (8-iso-PGF2α, P = 0·83; 15-keto-dihydro-PGF2α, P = 0·45; and CRP, P = 0·97). In conclusion, a 12-week dietary fat modification did not affect the investigated markers of oxidative stress and inflammation among subjects with the MetS in the LIPGENE study.
Resumo:
Background and aims The Metabolic Syndrome (MetS) is associated with increased cardiovascular risk. Circulating microparticles (MP) are involved in the pathogenesis of atherothrombotic disorders and are raised in individual with CVD. We measured their level and cellular origin in subjects with MetS and analyzed their associations with 1/anthropometric and biological parameters of MetS, 2/inflammation and oxidative stress markers. Methods and results Eighty-eight subjects with the MetS according to the NCEP-ATPIII definition were enrolled in a bicentric study and compared to 27 healthy controls. AnnexinV-positive MP (TMP), MP derived from platelets (PMP), erythrocytes (ErMP), endothelial cells (EMP), leukocytes (LMP) and granulocytes (PNMP) were determined by flow cytometry. MetS subjects had significantly higher counts/μl of TMP (730.6 ± 49.7 vs 352.8 ± 35.6), PMP (416.0 ± 43.8 vs 250.5 ± 23.5), ErMP (243.8 ± 22.1 vs 73.6 ± 19.6) and EMP (7.8 ± 0.8 vs 4.0 ± 1.0) compared with controls. LMP and PNMP were not statistically different between groups. Multivariate analysis demonstrated that each criterion for the MetS influenced the number of TMP. Waist girth was a significant determinant of PMP and EMP level and blood pressure was correlated with EMP level. Glycemia positively correlated with PMP level whereas dyslipidemia influenced EMP and ErMP levels. Interestingly, the oxidative stress markers, plasma glutathione peroxydase and urinary 8-iso-prostaglandin F2 α, independently influenced TMP and PMP levels whereas inflammatory markers did not, irrespective of MP type. Conclusion Increased levels of TMP, PMP, ErMP and EMP are associated with individual metabolic abnormalities of MetS and oxidative stress. Whether MP assessment may represent a marker for risk stratification or a target for pharmacological intervention deserves further investigation.
Resumo:
Aims: To investigate the effect of the oxidative stress of ozone on the microbial inactivation, cell membrane integrity and permeability and morphology changes of Escherichia coli. Methods and Results: Escherichia coli BW 25113 and its isogenic mutants in soxR, soxS, oxyR, rpoS and dnaK genes were treated with ozone at a concentration of 6 lg ml)1 for a period up to 240 s. A significant effect of ozone exposure on microbial inactivation was observed. After ozonation, minor effects on the cell membrane integrity and permeability were observed, while scanning electron microscopy analysis showed slightly altered cell surface structure. Conclusions: The results of this study suggest that cell lysis was not the major mechanism of microbial inactivation. The deletion of oxidative stress–related genes resulted in increased susceptibility of E. coli cells to ozone treatment, implying that they play an important role for protection against the radicals produced by ozone. However, DnaK that has previously been shown to protect against oxidative stress did not protect against ozone treatment in this study. Furthermore, RpoS was important for the survival against ozone. Significance and Impact of the Study: This study provides important information about the role of oxidative stress in the responses of E. coli during ozonation.
Resumo:
We investigated the activation of three subfamilies of mitogen-activated protein kinases (MAPKs), namely the stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs), the extracellularly responsive kinases (ERKs) and p38-MAPK, by oxidative stress as exemplified by H2O2 in primary cultures of neonatal rat ventricular myocytes. The 46 and 54 kDa species of SAPKs/JNKs were activated 5- and 10-fold, respectively, by 0.1 mM H2O2 (the maximally effective concentration). Maximal activation occurred at 15-30 min, but was still detectable after 2 h. Both ERK1 and ERK2 were activated 16-fold by 0.1 mM H2O2 with a similar time course to the SAPKs/JNKs, and this was comparable with their activation by 1 microM PMA, the most powerful activator of ERKs that we have so far identified in these cells. The activation of ERKs by H2O2 was inhibited by PD98059, which inhibits the activation of MAPK (or ERK) kinases, and by the protein kinase C (PKC) inhibitor, GF109203X. ERK activation was also inhibited by down-regulation of PMA-sensitive PKC isoforms. p38-MAPK was activated by 0.1 mM H2O2 as shown by an increase in its phosphorylation. However, maximal phosphorylation (activation) was more rapid (<5 min) than for the SAPKs/JNKs or the ERKs. We studied the downstream consequences of p38-MAPK activation by examining activation of MAPK-activated protein kinase 2 (MAPKAPK2) and phosphorylation of the MAPKAPK2 substrate, the small heat shock protein HSP25/27. As with p38-MAPK, MAPKAPK2 was rapidly activated (maximal within 5 min) by 0.1 mM H2O2. This activation was abolished by 10 microM SB203580, a selective inhibitor of certain p38-MAPK isoforms. The phosphorylation of HSP25/27 rapidly followed activation of MAPKAPK2 and was also inhibited by SB203580. Phosphorylation of HSP25/27 was associated with a decrease in its aggregation state. These data indicate that oxidative stress is a powerful activator of all three MAPK subfamilies in neonatal rat ventricular myocytes. Activation of all three MAPKs has been associated with the development of the hypertrophic phenotype. However, stimulation of p38-MAPK and the consequent phosphorylation of HSP25/27 may also be important in cardioprotection.
Resumo:
Endogenous oxidative stress is a likely cause of cardiac myocyte death in vivo. We examined the early (0-2 h) changes in the proteome of isolated cardiac myocytes from neonatal rats exposed to H2O2 (0.1 mM), focussing on proteins with apparent molecular masses of between 20 and 30 kDa. Proteins were separated by two-dimensional gel electrophoresis (2DGE), located by silver-staining and identified by mass spectrometry. Incorporation of [35S]methionine or 32Pi was also studied. For selected proteins, transcript abundance was examined by reverse transcriptase-polymerase chain reaction. Of the 38 protein spots in the region, 23 were identified. Two families showed changes in 2DGE migration or abundance with H2O2 treatment: the peroxiredoxins and two small heat shock protein (Hsp) family members: heat shock 27 kDa protein 1 (Hsp25) and alphaB-crystallin. Peroxiredoxins shifted to lower pI values and this was probably attributable to 'over-oxidation' of active site Cys-residues. Hsp25 also shifted to lower pI values but this was attributable to phosphorylation. alphaB-crystallin migration was unchanged but its abundance decreased. Transcripts encoding peroxiredoxins 2 and 5 increased significantly. In addition, 10 further proteins were identified. For two (glutathione S-transferase pi, translationally-controlled tumour protein), we could not find any previous references indicating their occurrence in cardiac myocytes. We conclude that exposure of cardiac myocytes to oxidative stress causes post-translational modification in two protein families involved in cytoprotection. These changes may be potentially useful diagnostically. In the short term, oxidative stress causes few detectable changes in global protein abundance as assessed by silver-staining.
Resumo:
The toxic effects of oxidative stress on cells (including cardiac myocytes, the contractile cells of the heart) are well known. However, an increasing body of evidence has suggested that increased production of reactive oxygen species (ROS) promotes cardiac myocyte growth. Thus, ROS may be 'second messenger' molecules in their own right, and growth-promoting neurohumoral agonists might exert their effects by stimulating production of ROS. The authors review the principal growth-promoting intracellular signaling pathways that are activated by ROS in cardiac myocytes, namely the mitogen-activated protein kinase cascades (extracellular signal-regulated kinases 1/2, c-Jun N-terminal kinases, and p38-mitogen-activated protein kinases) and the phosphoinositide 3-kinase/protein kinase B (Akt) pathway. Possible mechanisms are discussed by which these pathways are activated by ROS, including the oxidation of active site cysteinyl residues of protein and lipid phosphatases with their consequent inactivation, the potential involvement of protein kinase C or the apoptosis signal-regulating kinase 1, and the current models for the activation of the guanine nucleotide binding protein Ras.
Resumo:
DNA microarrays can be used to measure environmental stress responses. If they are to be predictive of environmental impact, we need to determine if altered gene expression translates into negative impacts on individuals and populations. A large cDNA microarray (14000 spots) was created to measure molecular stress responses to cadmium in Daphnia magna,the most widely used aquatic indicator species, and relate responses to population growth rate (pgr). We used the array to detect differences in the transcription of genes in juvenile D. magna (24 h old) after 24 h exposure to a control and three cadmium concentrations (6, 20, and 37 mu g Cd2+ L-1). Stress responses at the population level were estimated following a further 8 days exposure. Pgr was approximately linear negative with increasing cadmium concentration over this range. The microarray profile of gene expression in response to acute cadmium exposure begins to provide an overview of the molecular responses of D. magna, especially in relation to growth and development. Of the responding genes, 29% were involved with metabolism including carbohydrate, fat and peptide metabolism, and energy production, 31% were involved with transcription/translation, while 40% of responding genes were associated with cellular processes like growth and moulting, ion transport, and general stress responses (which included oxidative stress). Our production and application of a large Daphnia magna microarray has shown that measured gene responses can be logically linked to the impact of a toxicant such as cadmium on somatic growth and development, and consequently pgr.
Resumo:
We hypothesized that the hepatotoxicity that develops after the induction of oxidative stress (induced by d-galactosamine [GalN]) can be ameliorated by alpha-tocopherol (ATC) and the soy isoflavone daidzein. To test this, we ranked and assigned male Wistar rats into 6 groups, which involved pretreatment (ATC or daidzein) for 1 hour followed by treatment (GalN) for 23 hours. Histopathologic analysis showed that GalN administration induced marked necrosis (P < .001), steatosis (P < .001), both lobular and portal inflammations (P < .001), overall histopathologic score (P < .001), and activation of caspase-3 in the liver (P < .001). Immunohistochemical staining of malondialdehyde-protein adducts, a measure of oxidative stress, was increased in response to GalN (P < .001). Paradoxically, there were increases in total (P < .05) and cytosolic superoxide dismutase (P < .001) activities after GalN administration, indicative of an up-regulation of antioxidant defenses. The concentration of total protein (P < .001), albumin (P < .01), and globulin fractions (P < .001) in the plasma, as well as the activity of aspartate aminotransferase (P < .001), was significantly perturbed after GalN treatment, reflective of overall acute hepatic injury. Administration of daidzein showed a significant amelioration of the Ga1N-induced increase in malondialdehyde-protein adducts (P < .01) and cytosolic superoxide dismutase activities (P < .01) in the liver. However, all other variables were not significantly altered in response to daidzein. In response to ATC pretreatment, the total histopathologic score (P < .05), degree of necrosis (P < .05), and both lobular (P < .05) and portal (P = .05) inflammations were significantly ameliorated. To conclude, both daidzein and ATC protect the liver against oxidative damage possibly via different pathways.
Resumo:
The average UK adult consumes less than three portions of fruit and vegetables daily, despite evidence to suggest that consuming five portions daily could help prevent chronic diseases. It is recommended that fruit juice should only count as one of these portions, as juicing removes fibre and releases sugars. However, fruit juices contain beneficial compounds such as vitamin C and flavonoids and could be a useful source of dietary phytochemicals. Two randomised controlled cross-over intervention studies investigating the effects of chronic and acute consumption of commercially-available fruit- and vegetable-puree-based drinks (FVPD) on bioavailability, antioxidant status and CVD risk factors are described. Blood and urine samples were collected during both studies and vascular tone was measured using laser Doppler imaging. In the chronic intervention study FVPD consumption was found to significantly increase dietary carotenoids (P = 0.001) and vitamin C (P = 0.003). Plasma carotenoids were increased (P = 0.001), but the increase in plasma vitamin C was not significant. There were no significant effects on oxidative stress, antioxidant status and other CVD risk factors. In the acute intervention study FVPD were found to increase total plasma nitrate and nitrite (P = 0.001) and plasma vitamin C (P = 0.002). There was no effect on plasma lipids or uric acid, but there was a lower glucose and insulin peak concentration after consumption of the FVPD compared with the sugar-matched control. There was a trend towards increased vasodilation following both chronic and acute FVPD consumption. All volunteers were retrospectively genotyped for the eNOS G298T polymorphism and the effect of genotype on the measurements is discussed. Overall, there was a non-significant trend towards increased endothelium-dependent vasodilation following both acute and chronic FVPD consumption. However, there was a significant time x treatment effect (P < 0.05) of acute FVPD consumption in individuals with the GG variant of the eNOS gene.