83 resultados para OTHER ASPECTS OF PSYCHOPHARMACOLOGY
Resumo:
The International System of Units (SI) is founded on seven base units, the metre, kilogram, second, ampere, kelvin, mole and candela corresponding to the seven base quantities of length, mass, time, electric current, thermodynamic temperature, amount of substance and luminous intensity. At its 94th meeting in October 2005, the International Committee for Weights and Measures (CIPM) adopted a recommendation on preparative steps towards redefining the kilogram, ampere, kelvin and mole so that these units are linked to exactly known values of fundamental constants. We propose here that these four base units should be given new definitions linking them to exactly defined values of the Planck constant h, elementary charge e, Boltzmann constant k and Avogadro constant NA, respectively. This would mean that six of the seven base units of the SI would be defined in terms of true invariants of nature. In addition, not only would these four fundamental constants have exactly defined values but also the uncertainties of many of the other fundamental constants of physics would be either eliminated or appreciably reduced. In this paper we present the background and discuss the merits of these proposed changes, and we also present possible wordings for the four new definitions. We also suggest a novel way to define the entire SI explicitly using such definitions without making any distinction between base units and derived units. We list a number of key points that should be addressed when the new definitions are adopted by the General Conference on Weights and Measures (CGPM), possibly by the 24th CGPM in 2011, and we discuss the implications of these changes for other aspects of metrology.
Resumo:
It is becoming increasingly difficult for the public to attempt to assess risks using traditional methods such as smell, taste or other physical attributes of food. The existence of extrinsic cues such as the country of origin (COO) of food can help to make food purchase decisions easier for consumers. However, the use of extrinsic cues depends heavily on the extent to which consumers trust such signals to be indicative of quality or safety, which in turn depends on the credibility behind that cue. This paper aims to examine consumers association of domestically produced food with increased food safety standards and the association of COO and food safety information with socio-demographics and other aspects of consumer psychology such as attitudes, risk perception and trust. Using an ordered probit model, domestic production is examined as an extrinsic cue for food safety by looking at the relationship with trust in food safety information provided by national food standards agencies (NFSAs) and other socio-demographic characteristics, based on nationally representative data from 2725 face-to-face interviews across five European countries. Results suggest that domestic production of food is an extrinsic cue for food safety and as consumers place increasing importance on food safety they are more interested in food produced in their own country. This, coupled with consumer trust in a strong, and independent national food standards agency, suggests the potential exists for the increased consumption of domestically produced foods.
Resumo:
It is well established that crop production is inherently vulnerable to variations in the weather and climate. More recently the influence of vegetation on the state of the atmosphere has been recognized. The seasonal growth of crops can influence the atmosphere and have local impacts on the weather, which in turn affects the rate of seasonal crop growth and development. Considering the coupled nature of the crop-climate system, and the fact that a significant proportion of land is devoted to the cultivation of crops, important interactions may be missed when studying crops and the climate system in isolation, particularly in the context of land use and climate change. To represent the two-way interactions between seasonal crop growth and atmospheric variability, we integrate a crop model developed specifically to operate at large spatial scales (General Large Area Model for annual crops) into the land surface component of a global climate model (GCM; HadAM3). In the new coupled crop-climate model, the simulated environment (atmosphere and soil states) influences growth and development of the crop, while simultaneously the temporal variations in crop leaf area and height across its growing season alter the characteristics of the land surface that are important determinants of surface fluxes of heat and moisture, as well as other aspects of the land-surface hydrological cycle. The coupled model realistically simulates the seasonal growth of a summer annual crop in response to the GCM's simulated weather and climate. The model also reproduces the observed relationship between seasonal rainfall and crop yield. The integration of a large-scale single crop model into a GCM, as described here, represents a first step towards the development of fully coupled crop and climate models. Future development priorities and challenges related to coupling crop and climate models are discussed.
Resumo:
Technology involving genetic modification of crops has the potential to make a contribution to rural poverty reduction in many developing countries. Thus far, insecticide-producing 'Bt' varieties of cotton have been the main GM crops under cultivation in developing nations. Several studies have evaluated the farm-level performance of Bt varieties in comparison to conventional ones by estimating production technology, and have mostly found Bt technology to be very successful in raising output and/or reducing insecticide input. However, the production risk properties of this technology have not been studied, although they are likely to be important to risk-averse smallholders. This study investigates the output risk aspects of Bt technology using a three-year farm-level dataset on smallholder cotton production in Makhathini flats, Kwa-Zulu Natal, South Africa. Stochastic dominance and stochastic production function estimation methods are used to examine the risk properties of the two technologies. Results indicate that Bt technology increases output risk by being most effective when crop growth conditions are good, but being less effective when conditions are less favourable. However, in spite of its risk increasing effect, the mean output performance of Bt cotton is good enough to make it preferable to conventional technology even for risk-averse smallholders.
Resumo:
A detailed spore investigation of spore release and dispersal from an isolated colony of Phascum cuspidatum Hedw. indicated that approximately 98% of the spores originally present remained within the colony. The spatial distribution of colonies of P.cuspidatum and Pottia truncata (Hedw.) Fürer. in relation to those of the previous year was investigated by mapping the occurrence of colonies in five permanent quadrats for each species during two successive years. Phascum cuspidatum reoccurred in three quadrats during the second year, and P. truncata in only one, in the latter case apparently due to invasion by other mosses, principally Barbula hornschuchiana Schultz. A substantial proportion of the second year colonies overlapped in position with the first year colonies, particularly in P.cuspidatum. The results are discussed in relation to data on spore dispersal and other aspects of the life-history of these annual or short-lived shuttle mosses.
Resumo:
One of the recurring themes of the debates concerning the application of genetic transformation technology has been the role of Intellectual Property Rights (IPR). This term covers both the content of patents and the confidential expertise usually related to methodology and referred to as 'Trade Secrets'. This review explains the concepts behind patent protection, and discusses the wide-ranging scope of existing patents that cover all aspects of transgenic technology, from selectable markers and novel promoters to methods of gene introduction. Although few of the patents in this area have any real commercial value, there are a small number of key patents that restrict the 'freedom to operate' of new companies seeking to exploit the methods. Over the last 20 years, these restrictions have forced extensive cross-licensing between ag-biotech companies and have been one of the driving forces behind the consolidation of these companies. Although such issues are often considered of little interest to the academic scientist working in the public sector, they are of great importance in any discussion of the role of 'public-good breeding' and of the relationship between the public and private sectors.
Learning across business sectors: Aspects of human resource management in aerospace and construction
Resumo:
In our state of centralised control of the curriculum and high-stakes testing an examination subject's assessment objectives have become high profile. Some of the anomalous effects of this profile are shown in the teaching, question-setting, and marking of English literature. Glimpses of earlier times are revealed, all three secondary school key stages are considered, examination performances are discussed, and the views of beginning teachers about teaching to the test are sought.