60 resultados para Nutrient Profile Chitrapuzha
Resumo:
The unsaturated zone exerts a major control on the delivery of nutrients to Chalk streams, yet flow and transport processes in this complex, dual-porosity medium have remained controversial. A major challenge arises in characterising these processes, both at the detailed mechanistic level and at an appropriate level for inclusion within catchment-scale models for nutrient management. The lowland catchment research (LOCAR) programme in the UK has provided a unique set of comprehensively instrumented groundwater-dominated catchments. Of these, the Pang and Lambourn, tributaries of the Thames near Reading, have been a particular focus for research into subsurface processes and surface water-groundwater interactions. Data from LOCAR and other sources, along with a new dual permeability numerical model of the Chalk, have been used to explore the relative roles of matrix and fracture flow within the unsaturated zone and resolve conflicting hypotheses of response. From the improved understanding gained through these explorations, a parsimonious conceptualisation of the general response of flow and transport within the Chalk unsaturated zone was formulated. This paper summarises the modelling and data findings of these explorations, and describes the integration of the new simplified unsaturated zone representation with a catchment-scale model of nutrients (INCA), resulting in a new model for catchment-scale flow and transport within Chalk systems: INCA-Chalk. This model is applied to the Lambourn, and results, including hindcast and forecast simulations, are presented. These clearly illustrate the decadal time-scales that need to be considered in the context of nutrient management and the EU Water Framework Directive. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Increasing areas of altered wetland are being restored by re-flooding the soil. Evidence in the literature indicates that this practice can induce the redox-mediated release of soil nutrients, thereby increasing the risk of diffuse water pollution. However, for the sake of improving wedand management decisions, there is a need for more detailed studies of the underlying relationship between the hydrological and redox dynamics that explain this risk; this is particularly the case in agricultural peatlands that are commonly targeted for the creation of lowland wet grassland. A 12-month field study was conducted to evaluate the relationship between hydrological fluctuations and soil redox potential (Eh) in a nutrient-rich peat field (32 g N kg(-1) and 1100 mg P kg(-1) in the surface 0-30 cm soil) that had been restored as lowland wet grassland from intensive arable production. Field tensiometers were installed at the 30-, 60- and 90-cm soil depths, and Pt electrodes at the 10-, 30-, 60- and 90-cm depths, for daily logging of soil water tension and Eh, respectively. The values for soil water tension displayed a strong negative relationship (P < 0.001) with monthly dip well observations of water table height. Calculations of soil water potential from the logged tension values were used, therefore, to provide a detailed profile of field water level and, together with precipitation data, explained some of the variation in Eh. For example, during the summer, alternating periods of aerobism (Eh > 330 mV) in the surface, 0-10 cm layer of peat coincided with intense precipitation events. Redox potential throughout the 30-100 cm profile also fluctuated seasonally; indeed, at all depths Eh displayed a strong, negative relationship (P < 0.001) with water table height over the 12-month study period. However, Eh throughout the 30-100 cm profile remained relatively low (< 230 mV), indicating permanently reduced conditions that are associated with denitrification and reductive dissolution of Fe-bound P. The implications of these processes in the N- and P-rich peat for wetland plant diversity and water quality are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Representative Soil Sampling Scheme of England and Wales has recorded information on the soil of agricultural land in England and Wales since 1969. It is a valuable source of information about the soil in the context of monitoring for sustainable agricultural development. Changes in soil nutrient status and pH were examined over the period 1971-2001. Several methods of statistical analysis were applied to data from the surveys during this period. The main focus here is on the data for 1971, 1981, 1991 and 2001. The results of examining change over time in general show that levels of potassium in the soil have increased, those of magnesium have remained fairly constant, those of phosphorus have declined and pH has changed little. Future sampling needs have been assessed in the context of monitoring, to determine the mean at a given level of confidence and tolerable error and to detect change in the mean over time at these same levels over periods of 5 and 10 years. The results of a non-hierarchical multivariate classification suggest that England and Wales could be stratified to optimize future sampling and analysis. To monitor soil quality and health more generally than for agriculture, more of the country should be sampled and a wider range of properties recorded.
Resumo:
A field monitoring study was carried out to follow the changes of fine root morphology, biomass and nutrient status in relation to seasonal changes in soil solution chemistry and moisture regime in a mature Scots pine stand on acid soil. Seasonal and yearly fluctuations in soil moisture and soil solution chemistry have been observed. Changes in soil moisture accounted for some of the changes in the soil solution chemistry. The results showed that when natural acidification in the soil occurs with low pH (3.5-4.2) and high aluminium concentration in the soil solution (> 3-10 mg l(-1)), fine root longevity and distribution could be affected. However, fine root growth of Scots pine may not be negatively influenced by adverse soil chemical conditions if soil moisture is not a limiting factor for root growth. In contrast, dry soil conditions increase Scots pine susceptibility to soil acidification and this could significantly reduce fine root growth and increase root mortality. It is therefore important to study seasonal fluctuations of the environmental variables when investigating and modelling cause-effect relationships.
Resumo:
Nutrient cycles link agricultural systems to their societies and surroundings; inputs of nitrogen and phosphorus in particular are essential for high crop yields, but downstream and downwind losses of these same nutrients diminish environmental quality and human well-being. Agricultural nutrient balances differ substantially with economic development, from inputs that are inadequate to maintain soil fertility in parts of many developing countries, particularly those of sub-Saharan Africa, to excessive and environmentally damaging surpluses in many developed and rapidly growing economies. National and/or regional policies contribute to patterns of nutrient use and their environmental consequences in all of these situations. Solutions to the nutrient challenges that face global agriculture can be informed by analyses of trajectories of change within, as well as across, agricultural systems.
Resumo:
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper describes an assessment of the nitrogen and phosphorus dynamics of the River Kennet in the south east of England. The Kennet catchment (1200 km(2)) is a predominantly groundwater fed river impacted by agricultural and sewage sources of nutrient (nitrogen and phosphorus) pollution. The results from a suite of simulation models are integrated to assess the key spatial and temporal variations in the nitrogen (N) and phosphorus (P) chemistry, and the influence of changes in phosphorous inputs from a Sewage Treatment Works on the macrophyte and epiphyte growth patterns. The models used are the Export Co-efficient model, the Integrated Nitrogen in Catchments model, and a new model of in-stream phosphorus and macrophyte dynamics: the 'Kennet' model. The paper concludes with a discussion on the present state of knowledge regarding the water quality functioning, future research needs regarding environmental modelling and the use of models as management tools for large, nutrient impacted riverine systems. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
A semi-distributed model, INCA, has been developed to determine the fate and distribution of nutrients in terrestrial and aquatic systems. The model simulates nitrogen and phosphorus processes in soils, groundwaters and river systems and can be applied in a semi-distributed manner at a range of scales. In this study, the model has been applied at field to sub-catchment to whole catchment scale to evaluate the behaviour of biosolid-derived losses of P in agricultural systems. It is shown that process-based models such as INCA, applied at a wide range of scales, reproduce field and catchment behaviour satisfactorily. The INCA model can also be used to generate generic information for risk assessment. By adjusting three key variables: biosolid application rates, the hydrological connectivity of the catchment and the initial P-status of the soils within the model, a matrix of P loss rates can be generated to evaluate the behaviour of the model and, hence, of the catchment system. The results, which indicate the sensitivity of the catchment to flow paths, to application rates and to initial soil conditions, have been incorporated into a Nutrient Export Risk Matrix (NERM).
Resumo:
The development of high throughput techniques ('chip' technology) for measurement of gene expression and gene polymorphisms (genomics), and techniques for measuring global protein expression (proteomics) and metabolite profile (metabolomics) are revolutionising life science research, including research in human nutrition. In particular, the ability to undertake large-scale genotyping and to identify gene polymorphisms that determine risk of chronic disease (candidate genes) could enable definition of an individual's risk at an early age. However, the search for candidate genes has proven to be more complex, and their identification more elusive, than previously thought. This is largely due to the fact that much of the variability in risk results from interactions between the genome and environmental exposures. Whilst the former is now very well defined via the Human Genome Project, the latter (e.g. diet, toxins, physical activity) are poorly characterised, resulting in inability to account for their confounding effects in most large-scale candidate gene studies. The polygenic nature of most chronic diseases offers further complexity, requiring very large studies to disentangle relatively weak impacts of large numbers of potential 'risk' genes. The efficacy of diet as a preventative strategy could also be considerably increased by better information concerning gene polymorphisms that determine variability in responsiveness to specific diet and nutrient changes. Much of the limited available data are based on retrospective genotyping using stored samples from previously conducted intervention trials. Prospective studies are now needed to provide data that can be used as the basis for provision of individualised dietary advice and development of food products that optimise disease prevention. Application of the new technologies in nutrition research offers considerable potential for development of new knowledge and could greatly advance the role of diet as a preventative disease strategy in the 21st century. Given the potential economic and social benefits offered, funding for research in this area needs greater recognition, and a stronger strategic focus, than is presently the case. Application of genomics in human health offers considerable ethical and societal as well as scientific challenges. Economic determinants of health care provision are more likely to resolve such issues than scientific developments or altruistic concerns for human health.
Resumo:
Oral nutrition supplements (ONS) are routinely prescribed to those with, or at risk of, malnutrition. Previous research identified poor compliance due to taste and sweetness. This paper investigates taste and hedonic liking of ONS, of varying sweetness and metallic levels, over consumption volume; an important consideration as patients are prescribed large volumes of ONS daily. A sequential descriptive profile was developed to determine the perception of sensory attributes over repeat consumption of ONS. Changes in liking of ONS following repeat consumption were characterised by a boredom test. Certain flavour (metallic taste, soya milk flavour) and mouthfeel (mouthdrying, mouthcoating) attributes built up over increased consumption volume (p 0.002). Hedonic liking data from two cohorts, healthy older volunteers (n = 32, median age 73) and patients (n = 28, median age 85), suggested such build-up was disliked. Efforts made to improve the palatability of ONS must take account of the build up of taste and mouthfeel characteristics over increased consumption volume.
Resumo:
MALDI MS profiling, using easily available body fluids such as blood serum, has attracted considerable interest for its potential in clinical applications. Despite the numerous reports on MALDI MS profiling of human serum, there is only scarce information on the identity of the species making up these profiles, particularly in the mass range of larger peptides. Here, we provide a list of more than 90 entries of MALDI MS profile peak identities up to 10 kDa obtained from human blood serum. Various modifications such as phosphorylation were detected among the peptide identifications. The overlap with the few other MALDI MS peak lists published so far was found to be limited and hence our list significantly extends the number of identified peaks commonly found in MALDI MS profiling of human blood serum.