50 resultados para Nonminimum-phase systems
Resumo:
The temperature dependent mixing of organic and fluorous phases is one of the key principals of fluorous biphasic systems (FBS). Given the high cost of the perfluorous solvents and their impacts to the environment, it is apparent that elimination of these solvents in bulk quantity in the FBS is advantageous. We report for the first time, the surface coverage of silica with a fluorous solvent like material that traps (at ambient temperatures) and releases (at elevated temperatures) a fluorous tin bromide in organic solvent. Here, we demonstrate the catalytic utilisation of this species for the hydrocyclisation of 6-bromo-1-hexene with NaBH4. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of different sugars and glyoxal on the formation of acrylamide in low-moisture starch-based model systems was studied, and kinetic data were obtained. Glucose was more effective than fructose, tagatose, or maltose in acrylamide formation, whereas the importance of glyoxal as a key sugar fragmentation intermediate was confirmed. Glyoxal formation was greater in model systems containing asparagine and glucose rather than fructose. A solid phase microextraction GC-MS method was employed to determine quantitatively the formation of pyrazines in model reaction systems. Substituted pyrazine formation was more evident in model systems containing fructose; however, the unsubstituted homologue, which was the only pyrazine identified in the headspace of glyoxal-asparagine systems, was formed at higher yields when aldoses were used as the reducing sugar. Highly significant correlations were obtained for the relationship between pyrazine and acrylamide formation. The importance of the tautomerization of the asparagine-carbonyl decarboxylated Schiff base in the relative yields of pyrazines and acrylamide is discussed.
Determination of digesta flow entering the omasal canal of dairy cows using different marker systems
Resumo:
Four studies were conducted to compare the effect of four indigestible markers (LiCoEDTA, Yb-acetate, Cr-mordanted straw and indigestible neutral-detergent fibre (INDF)) and three marker systems on the flow of digesta entering the omasal canal of lactating dairy cows. Samples of digesta aspirated from the omasal canal were pooled and separated using filtration and high-speed centrifugation into three fractions defined as the liquid phase, small particulate and large particulate matter. Co was primarily associated with the liquid phase, Yb was concentrated in small particulate matter, whilst Cr and INDF were associated with large particles. Digesta flow was calculated based on single markers or using the reconstitution system based on combinations of two (Co + Yb, Co + Cr and Co + INDF) or three markers (Co + Yb + Cr and Co + Yb + INDF). Use of single markers resulted in large differences between estimates of organic matter (OM) flow entering the omasal canal suggesting that samples were not representative of true digesta. Digesta appeared to consist of at least three phases that tended to separate during sampling. OM was concentrated in particulate matter, whilst the liquid phase consisted mainly of volatile fatty acids and inorganic matter. Yb was intimately associated with nitrogenous compounds, whereas Cr and INDF were concentrated in fibrous material. Current data indicated that marker systems based on Yb in combination with Cr or INDF are required for the accurate determination of OM, N and neutral-detergent fibre flow. In cases where the flow of water-soluble nutrients entering the omasal canal is also required, the marker system should also include Co.
Resumo:
In the United Kingdom and in fact throughout Europe, the chosen standard for digital terrestrial television is the European Telecommunications Standards Institute (ETSI) ETN 300 744 also known as Digital Video Broadcasting - Terrestrial (DVB-T). The modulation method under this standard was chosen to be Orthogonal Frequency Division Multiplex (0FD4 because of the apparent inherent capability for withstanding the effects of multipath. Within the DVB-T standard, the addition of pilot tones was included that can be used for many applications such as channel impulse response estimation or local oscillator phase and frequency offset estimation. This paper demonstrates a technique for an estimation of the relative path attenuation of a single multipath signal that can be used as a simple firmware update for a commercial set-top box. This technique can be used to help eliminate the effects of multipath(1).
Resumo:
'Maximum Available Feedback' is Bode's term for the highest possible loop gain over a given bandwidth, with specified stability margins, in a single loop feedback system. His work using asymptotic analysis allowed Bode to develop a methodology for achieving this. However, the actual system performance differs from that specified, due to the use of asymptotic approximations, and the author[2] has described how, for instance, the actual phase margin is often much lower than required when the bandwidth is high, and proposed novel modifications to the asymptotes to address the issue. This paper gives some new analysis of such systems, showing that the method also contravenes Bode's definition of phase margin, and shows how the author's modifications can be used for different amounts of bandwidth.
Resumo:
A beamforming algorithm is introduced based on the general objective function that approximates the bit error rate for the wireless systems with binary phase shift keying and quadrature phase shift keying modulation schemes. The proposed minimum approximate bit error rate (ABER) beamforming approach does not rely on the Gaussian assumption of the channel noise. Therefore, this approach is also applicable when the channel noise is non-Gaussian. The simulation results show that the proposed minimum ABER solution improves the standard minimum mean squares error beamforming solution, in terms of a smaller achievable system's bit error rate.
Resumo:
The first example of an intramolecular enantioselective Michael addition of nitronates onto conjugated systems utilizing a chiral phase-transfer catalyst is described. A range of five-membered gamma-nitro esters with up to three stereocentres have been prepared and the relative and absolute configurations proven by chemical and crystallographic methods. The products are rapidly obtained and are precursors to five-membered cyclic gamma-amino acids.
Resumo:
We describe a high-level design method to synthesize multi-phase regular arrays. The method is based on deriving component designs using classical regular (or systolic) array synthesis techniques and composing these separately evolved component design into a unified global design. Similarity transformations ar e applied to component designs in the composition stage in order to align data ow between the phases of the computations. Three transformations are considered: rotation, re ection and translation. The technique is aimed at the design of hardware components for high-throughput embedded systems applications and we demonstrate this by deriving a multi-phase regular array for the 2-D DCT algorithm which is widely used in many vide ocommunications applications.
Resumo:
This review discusses liquid crystal phase formation by biopolymers in solution. Lyotropic mesophases have been observed for several classes of biopolymer including DNA, peptides, polymer/peptide conjugates, glycopolymers and proteoglycans. Nematic or chiral nematic (cholesteric) phases are the most commonly observed mesophases, in which the rod-like fibrils have only orientational order. Hexagonal columnar phases are observed for several systems (DNA, PBLG, polymer/peptide hybrids) at higher concentration. Lamellar (smectic) phases are reported less often, although there are examples such as the layer arrangement of amylopectin side chains in starch. Possible explanations for the observed structures are discussed. The biological role of liquid crystal phases for several of these systems is outlined. Commonly, they may serve as a template to align fibrils for defined structural roles when the biopolymer is extruded and dried, for instance in the production of silk by spiders or silkworms, or of chitin in arthropod shells. In other cases, liquid crystal phase formation may occur in vivo simply as a consequence of high concentration, for instance the high packing density of DNA within cell nuclei.
Resumo:
The night-time atmospheric chemistry of the biogenic volatile organic compounds (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol ('leaf alcohol'), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these stress-induced plant emissions were measured using the discharge-flow technique. We employed off-axis continuous-wave cavity-enhanced absorption spectroscopy (CEAS) for the detection of NO3, which enabled us to work in excess of the hexenol compounds over NO3. The rate coefficients determined were (2.93 +/- 0.58) x 10(-13) cm(3) molecule(-1) s(-1), (2.67 +/- 0.42) x 10(-13) cm(3) molecule(-1) s(-1), (4.43 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1), (1.56 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1), and (1.30 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1) for (Z)-hex-4-en-1-ol, (Z)-hex-3en-1-ol, (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol. The rate coefficient for the reaction of NO3 with (Z)-hex-3-en-1-ol agrees with the single published determination of the rate coefficient using a relative method. The other rate coefficients have not been measured before and are compared to estimated values. Relative-rate studies were also performed, but required modification of the standard technique because N2O5 (used as the source of NO3) itself reacts with the hexenols. We used varying excesses of NO2 to determine simultaneously rate coefficients for reactions of NO3 and N2O5 with (E)-hex-3-en-1-ol of (5.2 +/- 1.8) x 10(-13) cm(3) molecule(-1) s(-1) and (3.1 +/- 2.3) x 10(-18) cm(3) molecule(-1) s(-1). Our new determinations suggest atmospheric lifetimes with respect to NO3-initiated oxidation of roughly 1-4 h for the hexenols, comparable with lifetimes estimated for the atmospheric degradation by OH and shorter lifetimes than for attack by O-3. Recent measurements of [N2O5] suggest that the gas-phase reactions of N2O5 with unsaturated alcohols will not be of importance under usual atmospheric conditions, but they certainly can be in laboratory systems when determining rate coefficients.
Resumo:
A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.
Resumo:
Time-resolved kinetic studies of the reaction of germylene, GeH2, generated by laser. ash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with 2-butyne, CH3C CCH3. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 300-556 K. The second order rate constants obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.46 +/- 10.06) + (5.16 +/- 10.47) kJ mol(-1)/ RT ln 10 Calculations of the energy surface of the GeC4H8 reaction system were carried out employing the additivity principle, by combining previous quantum chemical calculations of related reaction systems. These support formation of 1,2-dimethylvinylgermylene (rather than 2,3-dimethylgermirene) as the end product. RRKM calculations of the pressure dependence of the reaction are in reasonable agreement with this finding. The reactions of GeH2 with C2H2 and with CH3CRCCH3 are compared and contrasted.
Resumo:
Certain deghosters suffer from the presence of distortion caused by the quadrature forming nature of the IF VSB filter operating on a ghosted IF signal. By analysing this a priori effect, a specific deghoster solution is found by using the phase quadrature detected IF signal to cancel the VSB induced ghost quadrature distortions from the detected inphase signal before deghosting takes place.
Resumo:
The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field perpendicular to the Ho3+ Ising direction has shown over the past 20 years to be a host of very interesting thermodynamic and magnetic phenomena. Unfortunately, the availability of other magnetic materials other than LiHoxY1−xF4 that may be described by a transverse-field Ising model remains very much limited. It is in this context that we use here a mean-field theory to investigate the suitability of the Ho(OH)3, Dy(OH)3, and Tb(OH)3 insulating hexagonal dipolar Ising-type ferromagnets for the study of the quantum phase transition induced by a magnetic field, Bx, applied perpendicular to the Ising spin direction. Experimentally, the zero-field critical (Curie) temperatures are known to be Tc≈2.54, 3.48, and 3.72 K, for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. From our calculations we estimate the critical transverse field, Bxc, to destroy ferromagnetic order at zero temperature to be Bxc=4.35, 5.03, and 54.81 T for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. We find that Ho(OH)3, similarly to LiHoF4, can be quantitatively described by an effective S=1/2 transverse-field Ising model. This is not the case for Dy(OH)3 due to the strong admixing between the ground doublet and first excited doublet induced by the dipolar interactions. Furthermore, we find that the paramagnetic (PM) to ferromagnetic (FM) transition in Dy(OH)3 becomes first order for strong Bx and low temperatures. Hence, the PM to FM zero-temperature transition in Dy(OH)3 may be first order and not quantum critical. We investigate the effect of competing antiferromagnetic nearest-neighbor exchange and applied magnetic field, Bz, along the Ising spin direction ẑ on the first-order transition in Dy(OH)3. We conclude from these preliminary calculations that Ho(OH)3 and Dy(OH)3 and their Y3+ diamagnetically diluted variants, HoxY1−x(OH)3 and DyxY1−x(OH)3, are potentially interesting systems to study transverse-field-induced quantum fluctuations effects in hard axis (Ising-type) magnetic materials.