61 resultados para Non-dominated sorting genetic algorithms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a fast integer sorting algorithm, herein referred as Bit-index sort, which is a non-comparison sorting algorithm for partial per-mutations, with linear complexity order in execution time. Bit-index sort uses a bit-array to classify input sequences of distinct integers, and exploits built-in bit functions in C compilers supported by machine hardware to retrieve the ordered output sequence. Results show that Bit-index sort outperforms in execution time to quicksort and counting sort algorithms. A parallel approach for Bit-index sort using two simultaneous threads is included, which obtains speedups up to 1.6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asynchronous Optical Sampling (ASOPS) [1,2] and frequency comb spectrometry [3] based on dual Ti:saphire resonators operated in a master/slave mode have the potential to improve signal to noise ratio in THz transient and IR sperctrometry. The multimode Brownian oscillator time-domain response function described by state-space models is a mathematically robust framework that can be used to describe the dispersive phenomena governed by Lorentzian, Debye and Drude responses. In addition, the optical properties of an arbitrary medium can be expressed as a linear combination of simple multimode Brownian oscillator functions. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing the recorded THz transients in the time or frequency domain will be outlined [4,5]. Since a femtosecond duration pulse is capable of persistent excitation of the medium within which it propagates, such approach is perfectly justifiable. Several de-noising routines based on system identification will be shown. Furthermore, specifically developed apodization structures will be discussed. These are necessary because due to dispersion issues, the time-domain background and sample interferograms are non-symmetrical [6-8]. These procedures can lead to a more precise estimation of the complex insertion loss function. The algorithms are applicable to femtosecond spectroscopies across the EM spectrum. Finally, a methodology for femtosecond pulse shaping using genetic algorithms aiming to map and control molecular relaxation processes will be mentioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a novel Hill-climbing genetic algorithm (GA) for simulation of protein folding. The program (written in C) builds a set of Cartesian points to represent an unfolded polypeptide's backbone. The dihedral angles determining the chain's configuration are stored in an array of chromosome structures that is copied and then mutated. The fitness of the mutated chain's configuration is determined by its radius of gyration. A four-helix bundle was used to optimise simulation conditions, and the program was compared with other, larger, genetic algorithms on a variety of structures. The program ran 50% faster than other GA programs. Overall, tests on 100 non-redundant structures gave comparable results to other genetic algorithms, with the Hill-climbing program running from between 20 and 50% faster. Examples including crambin, cytochrome c, cytochrome B and hemerythrin gave good secondary structure fits with overall alpha carbon atom rms deviations of between 5 and 5.6 Angstrom with an optimised hydrophobic term in the fitness function. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper represents the first step in an on-going work for designing an unsupervised method based on genetic algorithm for intrusion detection. Its main role in a broader system is to notify of an unusual traffic and in that way provide the possibility of detecting unknown attacks. Most of the machine-learning techniques deployed for intrusion detection are supervised as these techniques are generally more accurate, but this implies the need of labeling the data for training and testing which is time-consuming and error-prone. Hence, our goal is to devise an anomaly detector which would be unsupervised, but at the same time robust and accurate. Genetic algorithms are robust and able to avoid getting stuck in local optima, unlike the rest of clustering techniques. The model is verified on KDD99 benchmark dataset, generating a solution competitive with the solutions of the state-of-the-art which demonstrates high possibilities of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recursive least-squares algorithm with a forgetting factor has been extensively applied and studied for the on-line parameter estimation of linear dynamic systems. This paper explores the use of genetic algorithms to improve the performance of the recursive least-squares algorithm in the parameter estimation of time-varying systems. Simulation results show that the hybrid recursive algorithm (GARLS), combining recursive least-squares with genetic algorithms, can achieve better results than the standard recursive least-squares algorithm using only a forgetting factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-tuning proportional, integral and derivative control scheme based on genetic algorithms (GAs) is proposed and applied to the control of a real industrial plant. This paper explores the improvement in the parameter estimator, which is an essential part of an adaptive controller, through the hybridization of recursive least-squares algorithms by making use of GAs and the possibility of the application of GAs to the control of industrial processes. Both the simulation results and the experiments on a real plant show that the proposed scheme can be applied effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological Crossover occurs during the early stages of meiosis. During this process the chromosomes undergoing crossover are synapsed together at a number of homogenous sequence sections, it is within such synapsed sections that crossover occurs. The SVLC (Synapsing Variable Length Crossover) Algorithm recurrently synapses homogenous genetic sequences together in order of length. The genomes are considered to be flexible with crossover only being permitted within the synapsed sections. Consequently, common sequences are automatically preserved with only the genetic differences being exchanged, independent of the length of such differences. In addition to providing a rationale for variable length crossover it also provides a genotypic similarity metric for variable length genomes enabling standard niche formation techniques to be utilised. In a simple variable length test problem the SVLC algorithm outperforms current variable length crossover techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential Evolution (DE) is a tool for efficient optimisation, and it belongs to the class of evolutionary algorithms, which include Evolution Strategies and Genetic Algorithms. DE algorithms work well when the population covers the entire search space, and they have shown to be effective on a large range of classical optimisation problems. However, an undesirable behaviour was detected when all the members of the population are in a basin of attraction of a local optimum (local minimum or local maximum), because in this situation the population cannot escape from it. This paper proposes a modification of the standard mechanisms in DE algorithm in order to change the exploration vs. exploitation balance to improve its behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm for evaluating bilinear forms of matrix powers since they form the so-called Krylov subspaces. Results are presented comparing the performance of the Robust and Non-robust Monte Carlo algorithms. The algorithms are tested on large dense matrices as well as on large unstructured sparse matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A program is provided to determine structural parameters of atoms in or adsorbed on surfaces by refinement of atomistic models towards experimentally determined data generated by the normal incidence X-ray standing wave (NIXSW) technique. The method employs a combination of Differential Evolution Genetic Algorithms and Steepest Descent Line Minimisations to provide a fast, reliable and user friendly tool for experimentalists to interpret complex multidimensional NIXSW data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors describe a learning classifier system (LCS) which employs genetic algorithms (GA) for adaptive online diagnosis of power transmission network faults. The system monitors switchgear indications produced by a transmission network, reporting fault diagnoses on any patterns indicative of faulted components. The system evaluates the accuracy of diagnoses via a fault simulator developed by National Grid Co. and adapts to reflect the current network topology by use of genetic algorithms.