18 resultados para New knowledge systems
Resumo:
Urban metabolism considers a city as a system with flows of energy and material between it and the environment. Recent advances in bio-physical sciences provide methods and models to estimate local scale energy, water, carbon and pollutant fluxes. However, good communication is required to provide this new knowledge and its implications to endusers (such as urban planners, architects and engineers). The FP7 project BRIDGE (sustainaBle uRban plannIng Decision support accountinG for urban mEtabolism) aimed to address this gap by illustrating the advantages of considering these issues in urban planning. The BRIDGE Decision Support System (DSS) aids the evaluation of the sustainability of urban planning interventions. The Multi Criteria Analysis approach adopted provides a method to cope with the complexity of urban metabolism. In consultation with targeted end-users, objectives were defined in relation to the interactions between the environmental elements (fluxes of energy, water, carbon and pollutants) and socioeconomic components (investment costs, housing, employment, etc.) of urban sustainability. The tool was tested in five case study cities: Helsinki, Athens, London, Florence and Gliwice; and sub-models were evaluated using flux data selected. This overview of the BRIDGE project covers the methods and tools used to measure and model the physical flows, the selected set of sustainability indicators, the methodological framework for evaluating urban planning alternatives and the resulting DSS prototype.
Resumo:
Purpose – The Bodleian Binders Book contains nearly 150 pages of seventeenth century library records, revealing information about the binders used by the library and the thousands of bindings they produced. The purpose of this paper is to explore a pilot project to survey and record bindings information contained in the Binders Book. Design/methodology/approach – A sample size of seven pages (91 works, 65 identifiable bindings) to develop a methodology for surveying and recording bindings listed in the manuscript. To create a successful product that would be useful to bindings researchers, it addressed questions of bindings terminology and the role of the library in the knowledge creation process within the context that text encoding is changing the landscape of library functions. Text encoding formats were examined, and a basic TEI (Text Encoding Initiative) transcription was produced. This facilitates tagging of names and titles and the display of transcriptions with text images. Findings – Encoding was found not only to make the manuscript content more accessible, but to allow for the construction of new knowledge: characteristic Oxford binding traits were revealed and bindings were matched to binders. Plans for added functionality were formed. Originality/value – This research presents a “big picture” analysis of Oxford bindings as a result of text encoding and the foundation for qualitative and statistical analysis. It exemplifies the benefits of interdisciplinary methods – in this case from Digital Humanities – to enhance access to and interpretation of specialist materials and the library's provenance record.
Resumo:
Surface temperature is a key aspect of weather and climate, but the term may refer to different quantities that play interconnected roles and are observed by different means. In a community-based activity in June 2012, the EarthTemp Network brought together 55 researchers from five continents to improve the interaction between scientific communities who focus on surface temperature in particular domains, to exploit the strengths of different observing systems and to better meet the needs of different communities. The workshop identified key needs for progress towards meeting scientific and societal requirements for surface temperature understanding and information, which are presented in this community paper. A "whole-Earth" perspective is required with more integrated, collaborative approaches to observing and understanding Earth's various surface temperatures. It is necessary to build understanding of the relationships between different surface temperatures, where presently inadequate, and undertake large-scale systematic intercomparisons. Datasets need to be easier to obtain and exploit for a wide constituency of users, with the differences and complementarities communicated in readily understood terms, and realistic and consistent uncertainty information provided. Steps were also recommended to curate and make available data that are presently inaccessible, develop new observing systems and build capacities to accelerate progress in the accuracy and usability of surface temperature datasets.