55 resultados para Neuromuscular Electrical Stimulation, Near-Infrared Spectroscopy, Blood Flow, Fatigue, Motor Unit Recruitment, Isometric Contractions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earthâs atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cmâˆ1) and include reference to the window centred on 2600 cmâˆ1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback â cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum â as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calculations of the absorption of solar radiation by atmospheric gases, and water vapor in particular, are dependent on the quality of databases of spectral line parameters. There has been increasing scrutiny of databases such as HITRAN in recent years, but this has mostly been performed on a band-by-band basis. We report nine high-spectral-resolution (0.03 cm(-1)) measurements of the solar radiation reaching the surface in southern England over the wave number range 2000 to 12,500 cm(-1) (0.8 to 5 mm) that allow a unique assessment of the consistency of the spectral line databases over this entire spectral region. The data are assessed in terms of the modeled water vapor column that is required to bring calculations and observations into agreement; for an entirely consistent database, this water vapor column should be constant with frequency. For the HITRAN01 database, the spread in water vapor column is about 11%, with distinct shifts between different spectral regions. The HITRAN04 database is in significantly better agreement (about 5% spread) in the completely updated 3000 to 8000 cm(-1) spectral region, but inconsistencies between individual spectral regions remain: for example, in the 8000 to 9500 cm(-1) spectral region, the results indicate an 18% (+/- 1%) underestimate in line intensities with respect to the 3000 to 8000 cm(-1) region. These measurements also indicate the impact of isotopic fractionation of water vapor in the 2500 to 2900 cm(-1) range, where HDO lines dominate over the lines of the most abundant isotope of H2O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques for obtaining quantitative values of the temperatures and concentrations of remote hot gaseous effluents from their measured passive emission spectra have been examined in laboratory experiments. The high sensitivity of the spectrometer in the vicinity of the 2397 cm-1 band head region of CO2 has allowed the gas temperature to be calculated from the relative intensity of the observed rotational lines. The spatial distribution of the CO2 in a methane flame has been reconstructed tomographically using a matrix inversion technique. The spectrometer has been calibrated against a black body source at different temperatures and a self absorption correction has been applied to the data avoiding the need to measure the transmission directly. Reconstruction artifacts have been reduced by applying a smoothing routine to the inversion matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gas phase reactions Of SiCl4 and Si2Cl6 With CH3OH and C2H5OH have been investigated using both mass spectrometry and matrix isolation techniques. SiCl4 reacts with both CH3OH and C2H5OH upon mixing of the vapours for times in excess of 3 h to generate the HCl-elimination products SiCl3OR (R = CH3 or C2H5). The identity of these products is confirmed by deuteration experiments and by ab initio calculations at the HF/6-31G(d) level. Further products are generated when the mixture is passed through a tube heated to 750degreesC. Si2Cl6 reacts with CH3OH and C2H5OH via a different mechanism in which the Si-Si bond is cleaved to yield SiCl3OR and HCl. Other products of the type SiCl4-n(OCH3)(n) are tentatively identified by a combination of mass spectrometric and matrix isolation measurements. These latter products indicate further replacement of Cl atoms by OR groups as a result of reaction of CH3OH or C2H5OH with the initial product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An indoor rowing machine has been modified for functional electrical stimulation (FES) assisted rowing exercise in paraplegia. To perform the rowing manoeuvre successfully, however, the voluntarily controlled upper body movements must be co-ordinated with the movements of the electrically stimulated paralysed legs. To achieve such co-ordination, an automatic FES controller was developed that employs two levels of hierarchy. At the upper level, a finite state controller identifies the state or phase of the rowing cycle and activates the appropriate lower-level controller, in which electrical stimulation to the paralysed leg muscles is applied with reference to switching curves representing the desired seat velocity as a function of the seat position. In a pilot study, the hierarchical control of FES rowing was shown to be intuitive, reliable and easy to use. Compared with open-loop control of stimulation, all three variants of the closed-loop switching curve controllers used less muscle stimulation per rowing cycle (73% of the open-loop control on average). Further, the closed-loop controller that used switching curves derived from normal rowing kinematics used the lowest muscle stimulation (65% of the open-loop control) and was the most convenient to use for the client.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. Theoretic modeling and experimental studies suggest that functional electrical stimulation (FES) can improve trunk balance in spinal cord injured subjects. This can have a positive impact on daily life, increasing the volume of bimanual workspace, improving sitting posture, and wheelchair propulsion. A closed loop controller for the stimulation is desirable, as it can potentially decrease muscle fatigue and offer better rejection to disturbances. This paper proposes a biomechanical model of the human trunk, and a procedure for its identification, to be used for the future development of FES controllers. The advantage over previous models resides in the simplicity of the solution proposed, which makes it possible to identify the model just before a stimulation session ( taking into account the variability of the muscle response to the FES). Materials and Methods. The structure of the model is based on previous research on FES and muscle physiology. Some details could not be inferred from previous studies, and were determined from experimental data. Experiments with a paraplegic volunteer were conducted in order to measure the moments exerted by the trunk-passive tissues and artificially stimulated muscles. Data for model identification and validation also were collected. Results. Using the proposed structure and identification procedure, the model could adequately reproduce the moments exerted during the experiments. The study reveals that the stimulated trunk extensors can exert maximal moment when the trunk is in the upright position. In contrast, previous studies show that able-bodied subjects can exert maximal trunk extension when flexed forward. Conclusions. The proposed model and identification procedure are a successful first step toward the development of a model-based controller for trunk FES. The model also gives information on the trunk in unique conditions, normally not observable in able-bodied subjects (ie, subject only to extensor muscles contraction).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhenium(bipyridine)(tricarbonyl)(picoline) units have been linked covalently to tetraphenylmetalloporphyrins of magnesium and zinc via an amide bond between the bipyridine and one phenyl substituent of the porphyrin. The resulting complexes, abbreviated as [Re(CO)(3)(Pic)Bpy-MgTPP][OTf] and [Re(CO)(3)(Pic)Bpy-ZnTPP][OTf], exhibit no signs of electronic interaction between the Re(CO)(3)(bpy) units and the metalloporphyrin units in their ground states. However, emission spectroscopy reveals solvent-dependent quenching of porphyrin emission on irradiation into the long-wavelength absorption bands localized on the porphyrin. The characteristics of the excited states have been probed by picosecond time-resolved absorption (TRVIS) spectroscopy and time-resolved infrared (TRIR) spectroscopy in nitrile solvents. The presence of the charge-separated state involving electron transfer from MgTPP or ZnTPP to Re(bpy) is signaled in the TRIR spectra by a low-frequency shift in the nu(CO) bands of the Re(CO)(3) moiety similar to that observed by spectroelectrochemical reduction. Long-wavelength excitation of [Re(CO)(3)(Pic)Bpy-MTPP][OTf] results in characteristic TRVIS spectra of the S-1 state of the porphyrin that decay with a time constant of 17 ps (M = Mg) or 24 ps (M = Zn). The IR bands of the CS state appear on a time scale of less than 1 ps (Mg) or ca. 5 ps (Zn) and decay giving way to a vibrationally excited (i.e., hot) ground state via back electron transfer. The IR bands of the precursors recover with a time constant of 35 ps (Mg) or 55 ps (Zn). The short lifetimes of the charge-transfer states carry implications for the mechanism of reaction in the presence of triethylamine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most near-infrared atmospheric windows, absorption of solar radiation is dominated by the water vapor self-continuum and yet there is a paucity of measurements in these windows. We report new laboratory measurements of the self-continuum absorption at temperatures between 293 and 472 K and pressures from 0.015 to 5 atm in four near-infrared windows between 1 and 4 m (10000-2500 cm-1); the measurements are made over a wider range of wavenumber, temperatures and pressures than any previous measurements. They show that the self-continuum in these windows is typically one order of magnitude stronger than given in representations of the continuum widely used in climate and weather prediction models. These results are also not consistent with current theories attributing the self continuum within windows to the far-wings of strong spectral lines in the nearby water vapor absorption bands; we suggest that they are more consistent with water dimers being the major contributor to the continuum. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by 0.75 W/m2 (which is about 1% of the total clear-sky absorption) by using these new measurements as compared to calculations with the MT_CKD-2.5 self-continuum model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the potential application of mid-infrared spectroscopy (MIR 4,000â900 cmâˆ1) for the determination of milk coagulation properties (MCP), titratable acidity (TA), and pH in Brown Swiss milk samples (n = 1,064). Because MCP directly influence the efficiency of the cheese-making process, there is strong industrial interest in developing a rapid method for their assessment. Currently, the determination of MCP involves time-consuming laboratory-based measurements, and it is not feasible to carry out these measurements on the large numbers of milk samples associated with milk recording programs. Mid-infrared spectroscopy is an objective and nondestructive technique providing rapid real-time analysis of food compositional and quality parameters. Analysis of milk rennet coagulation time (RCT, min), curd firmness (a30, mm), TA (SH°/50 mL; SH° = Soxhlet-Henkel degree), and pH was carried out, and MIR data were recorded over the spectral range of 4,000 to 900 cmâˆ1. Models were developed by partial least squares regression using untreated and pretreated spectra. The MCP, TA, and pH prediction models were improved by using the combined spectral ranges of 1,600 to 900 cmâˆ1, 3,040 to 1,700 cmâˆ1, and 4,000 to 3,470 cmâˆ1. The root mean square errors of cross-validation for the developed models were 2.36 min (RCT, range 24.9 min), 6.86 mm (a30, range 58 mm), 0.25 SH°/50 mL (TA, range 3.58 SH°/50 mL), and 0.07 (pH, range 1.15). The most successfully predicted attributes were TA, RCT, and pH. The model for the prediction of TA provided approximate prediction (R2 = 0.66), whereas the predictive models developed for RCT and pH could discriminate between high and low values (R2 = 0.59 to 0.62). It was concluded that, although the models require further development to improve their accuracy before their application in industry, MIR spectroscopy has potential application for the assessment of RCT, TA, and pH during routine milk analysis in the dairy industry. The implementation of such models could be a means of improving MCP through phenotypic-based selection programs and to amend milk payment systems to incorporate MCP into their payment criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the potential of mid-infrared spectroscopy coupled with multidimensional statistical analysis for the prediction of processed cheese instrumental texture and meltability attributes. Processed cheeses (n = 32) of varying composition were manufactured in a pilot plant. Following two and four weeks storage at 4 degrees C samples were analysed using texture profile analysis, two meltability tests (computer vision, Olson and Price) and mid-infrared spectroscopy (4000-640 cm(-1)). Partial least squares regression was used to develop predictive models for all measured attributes. Five attributes were successfully modelled with varying degrees of accuracy. The computer vision meltability model allowed for discrimination between high and low melt values (R-2 = 0.64). The hardness and springiness models gave approximate quantitative results (R-2 = 0.77) and the cohesiveness (R-2 = 0.81) and Olson and Price meltability (R-2 = 0.88) models gave good prediction results. (c) 2006 Elsevier Ltd. All rights reserved..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of a fibre optic sensor, detecting light backscatter in a cheese vat during coagulation and syneresis, to predict curd moisture, fat loses and curd yield was examined. Temperature, cutting time and calcium levels were varied to assess the strength of the predictions over a range of processing conditions. Equations were developed using a combination of independent variables, milk compositional and light backscatter parameters. Fat losses, curd yield and curd moisture content were predicted with a standard error of prediction (SEP) of +/- 2.65 g 100 g(-1) (R-2 = 0.93), +/- 0.95% (R-2 = 0.90) and +/- 1.43% (R-2 = 0.94), respectively. These results were used to develop a model for predicting curd moisture as a function of time during syneresis (SEP = +/- 1.72%; R-2 = 0.95). By monitoring coagulation and syneresis, this sensor technology could be employed to control curd moisture content, thereby improving process control during cheese manufacture. (c) 2007 Elsevier Ltd. All rights reserved..