32 resultados para Natural Enemies


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parasitoids are among the most important natural enemies of insects in many environments. Acyrthosiphon pisum, the pea aphid, is a common pest of the leguminous crops in temperate regions. Pea aphids are frequently attacked by a range of endoparasitic wasps, including the common aphidiine, Aphidius ervi. Immunity to parasitoid attack is thought to involve secondary symbiotic bacteria, the presence of which is associated with the death of the parasitoid egg. It has been suggested that there is a fecundity cost of resistance, as individuals carrying the secondary symbionts associated with parasitoid resistance have fewer offspring. Supporting this hypothesis, we find a positive relationship between fecundity and susceptibility to parasitoid attack. There is also a negative relationship between fecundity and off-plant survival time (which positively correlates with resistance to parasitoid attack). Taken together, these results suggest that the aphids can either invest in defence (parasitoid resistance, increased off-plant survival time) or reproduction, and speculate that this may be mediated by changes in the aphids' endosymbiont fauna. Furthermore, there is a positive relationship between aphid size and resistance, suggesting that successful resistance to parasitoid attack may involve physical, as well as physiological, defences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. The presence of an across-species trade-off between dispersal ability and competitive ability has been proposed as a mechanism that facilitates coexistence. It is not clear if a similar trade-off exists within species. Such a trade-off would constrain the evolution of either trait and, given appropriate selection pressures, promote local adaptation in these traits. 2. This study found substantial levels of heritable variation in competitive ability of the pea aphid, Acyrthosiphon pisum Harris (Homoptera: Aphididae), measured in terms of relative survival when reared with a single clone of the vetch aphid, Megoura viciae Buckton (Homoptera: Aphididae). 3. Pea aphids can move to new patches by either flying (longer distance dispersal) or walking (local dispersal) from plant to plant. There was considerable clonal variation in dispersal ability, measured in terms of the proportion of winged offspring produced, and ability to survive away from their host plant. 4. Winged individuals showed longer off-plant survival times than wingless forms of the same pea aphid clone. 5. There was no evidence of a relationship between clonal competitive ability and either measure of dispersal ability, although the power of the test is limited by the number of pea aphid clones used in the trial. 6. However, there was a positive correlation between clonal fecundity and the proportion of winged offspring produced. Although speculative, it is suggested that clones that are more likely to either overwhelm their host plant or attract higher numbers of natural enemies as a result of having higher fecundity are more likely to produce winged morphs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herbivore dynamics and community structure are influenced both by plant quality and the actions of natural enemies. A factorial experiment manipulating both higher and lower trophic levels was designed to explore the determinants of colony growth of the aphid Aphis jacobaeae, a specialist herbivore on ragwort Senecio jacobaea. Potential plant quality was manipulated by regular addition of NPK-fertiliser and predator pressure was reduced by interception traps; the experiment was carried out at two sites. The size and persistence of aphid colonies were measured. Fertiliser addition affected plant growth in only one site, but never had a measurable effect on aphid colony growth. In both habitats the action of insect predators dominated, imposing strong and negative effects on aphid colony performance. Ants were left unmanipulated in both sites and their performance on the aphid colonies did not significantly differ between sites or between treatments. Our results suggest that, at least for aphid herbivores on S. jacobaea, the action of generalist insect predators appears to be the dominant factor affecting colony performance and can under certain conditions even improve plant productivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyculture is traditionally a low-input agricultural system and is important in many developing countries. Polycultures of interplanted crops often support fewer pests at lower densities than monoculture and tend to increase number of natural enemies. Also Yellow Sticky Plastic Sheet Traps have proved useful for trapping aphids. A field study was conducted to study the effectiveness of these potential pest management techniques along with the partially resistant (Cardinal) and susceptible (Desiree) potato cultivars, by using their different combinations for the management of Myzus persicae (Sulzer). Berseem, Trifolium alexandrinum (L.) (family: Leguminosae) was used for intercropping with potatoes. The different combinations (treatments) used in this study were: 1) Cardinal-berseem mixed cropping+yellow sticky plastic sheet traps 2) Cardinal-berseem mixed cropping 3) Cardinal+yellow sticky plastic sheet traps 4) Cardinal separately+berseem (as land area equivalents in relation to the mixed cropping treatments) 5) Cardinal (sole crop). Treatments 6-10 were the same treatments, but with Desiree as the potato cultivar. All these treatments were used to evaluate their effects as management techniques for M. persicae, their percent parasitism, percent emergence rate of the parasitoid, Aphidius matricariae Haliday and yield of Cardinal and Desiree. Mixed cropping of Cardinal and berseem together with the yellow sticky plastic sheet traps reduced aphids by over 90% compared with numbers on the sole Cardinal crop. This combination proved in this experiment the most effective for reducing the aphid populations as compared with all other treatments. Maximum percent parasitism i.e. 6.97 and 6.94% (almost double that in the other treatments) was recorded in the potato berseem mixed cropping, with and without traps respectively. In the same two treatments, yield was increased significantly as compared with all other treatments. However no significant effects of any of the variable was evident on the percent emergence of A. matricariae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the absence of equivalent research on genetically modified (GM) pest-resistant crops, their impact in pest management can be predicted from experience with traditionally bred varieties which share with GM crops the characteristic that the resistance is based on high expression of a single toxin. Such varieties lead to the rapid selection of tolerant pest strains, damage biological control and induce tolerance to synthetic pesticides. By contrast, polygenic and more broadly based resistant varieties will maintain their resistance for longer, and often synergise beneficially with biological control. The pests also become more susceptible to insecticides, giving the opportunity for applications which are selective in favour of natural enemies. However, although GM crops compare badly with traditional pest-resistant varieties, they compare favourably with insecticides, the technology they are most likely to replace.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An increase in resistance to one natural enemy may result in no correlated change, a positive correlated change, or a negative correlated change in the ability of the host or prey to resist other natural enemies. The type of specificity is important in understanding the evolutionary response to natural enemies and was studied here in a Drosaphila-parasitoid system. Drosophila melanogaster lines selected for increased larval resistance to the endoparasitoid wasps Asobara tabida or Leptopilina boulardi were exposed to attack by A. tabida, L. boulardi and Leptopilina heterotama at 15 degrees C, 20 degrees C, and 25 degrees C. In general, encapsulation ability increased with temperature, with the exception of the lines selected against L. boulardi, which showed the opposite trend. Lines selected against L, boulardi showed large increases in resistance against all three parasitoid species, and showed similar levels of defense against A. tabida to the lines selected against that parasitoid. In contrast, lines selected against A. tabida showed a large increase in resistance to A. tabida and generally to L. heterotoma, but displayed only a small change in their ability to survive attack by L. boulardi. Such asymmetries in correlated responses to selection for increased resistance to natural enemies may influence host-parasitoid community structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parasitoids are the most important natural enemies of many insect species. Larvae of many Drosophila species can defend themselves against attack by parasitoids through a cellular immune response called encapsulation. The paper reviews recent studies of the evolutionary biology and ecological genetics of resistance in Drosophila, concentrating on D. melanogaster. The physiological basis of encapsulation, and the genes known to interfere with resistance are briefly summarized. Evidence for within- and between-population genetic variation in resistance from isofemale line, artificial selection and classical genetic studies are reviewed. There is now firm evidence that resistance is costly to Drosophila, and the nature of this cost is discussed, and the possibility that it may involve a reduction in metabolic rate considered. Comparative data on encapsulation and metabolic rates across seven Drosophila species provides support for this hypothesis. Finally, the possible population and community ecological consequences of evolution in the levels of host resistance are examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the results of a study investigating the influence of elevated CO2 on species interactions across three trophic levels: a plant (Brassica oleracea), two aphid herbivores (the generalist Myzus persicae and the specialist Brevicoryne brassicae), and two natural enemies (the coccinellid Hippodamia convergens (ladybird) and the parasitoid wasp Diaeretiella rapae). Brassica oleracea plants reared under elevated CO2 conditions (650 ppmv vs. 350 ppmv) were larger and had decreased water and nitrogen content. Brevicoryne brassicae reared on plants grown in elevated CO2 were larger and accumulated more fat, while there was no change in M. persicae traits. Fecundity of individual aphids appeared to be increased when reared on plants grown in elevated CO2. However, these differences were generally lost when aphids were reared in colonies, suggesting that such changes in plant quality will have subtile effects on aphid intraspecific interactions. Nevertheless, CO2 treatment did influence aphid distribution on plants, with significantly fewer M. persicae found on the shoots, and B. brassicae was only found on senescing leaves, when colonies were reared on plants grown in elevated CO2. We reared B. brassicae and M. persicae in competition on plants grown at both the CO2 concentration treatments. We found a significantly lower ratio of M. persicae: B. brassicae on plants grown under elevated CO2 conditions, strongly suggesting that increasing CO2 concentrations can alter the outcome of competition among insect herbivores. This was also reflected in the distribution of the aphids on the plants. While the CO2 treatment did not influence where B. brassicae were found, fewer M. persicae were present on senescing leaves under elevated CO2 conditions. Changes in plant quality resulting from the CO2 treatments did not appear to alter aphid quality as prey species, as the number consumed by the ladybird H. convergens, and the number parasitised by the parasitoid wasp D. rapae, did not change. To our knowledge, this study provides the first empirical evidence that changes in host plant quality mediated by increasing levels of CO2 can alter the outcome of interspecific competition among insect herbivores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arthropods that have a direct impact on crop production (i.e. pests, natural enemies and pollinators) can be influenced by both local farm management and the context within which the fields occur in the wider landscape. However, the contributions and spatial scales at which these drivers operate and interact are not fully understood, particularly in the developing world. The impact of both local management and landscape context on insect pollinators and natural enemy communities and on their capacity to deliver related ecosystem services to an economically important tropical crop, pigeonpea was investigated. The study was conducted in nine paired farms across a gradient of increasing distance to semi-native vegetation in Kibwezi, Kenya. Results show that proximity of fields to semi-native habitats negatively affected pollinator and chewing insect abundance. Within fields, pesticide use was a key negative predictor of pollinator, pest and foliar active predator abundance. On the contrary, fertilizer application significantly enhanced pollinator and both chewing and sucking insect pest abundance. At a 1 km spatial scale of fields, there were significant negative effects of the number of semi-native habitat patches within fields dominated by mass flowering pigeonpea on pollinators abundance. For service provision, a significant decline in fruit set when insects were excluded from flowers was recorded. This study reveals the interconnections of pollinators, predators and pests with pigeonpea crop. For sustainable yields and to conserve high densities of both pollinators and predators of pests within pigeonpea landscapes, it is crucial to target the adoption of less disruptive farm management practices such as reducing pesticide and fertilizer inputs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A semiochemical based push-pull strategy for control of oilseed rape pests is being developed at Rothamsted Research. This strategy uses insect and plant derived semiochemicals to manipulate pests and their natural enemies. An important element within this strategy is an understanding of the importance of non-host plant cues for pest insects and how such signals could be used to manipulate their behaviour. Previous studies using a range of non-host plants have shown that, for the pollen beetle Meligethes aeneus (Coleoptera: Nitidulidae), the essential oil of lavender, Lavandula angustifolia (Lamiaceae), was the most repellent. The aim of this study was to identify the active components in L. angustifolia oil, and to investigate the behaviour of M. aeneus to these chemicals, to establish the most effective use of repellent stimuli to disrupt colonisation of oilseed rape crops. Coupled gas chromatography-electroantennography (GC-EAG) and gas chromatography-mass spectrometry (GC-MS) resulted in the identification of seven active compounds which were tested for behavioural activity using a 4-way olfactometer. Repellent responses were observed with (±)-linalool and (±)-linalyl acetate. The use of these chemicals within a push-pull pest control strategy is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of parasitoids on pests varies between conventional and low-intensity agricultural systems. Although the impacts on parasitoid natural enemies of many practices within these agricultural systems are well understood, the role of fertilisers has been less well studied. The effects of organic-based and conventional fertilisers on Hordeum vulgare L. (Poaceae), the aphid Metopolophium dirhodum Walker (Hemiptera: Aphididae), and its parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae) was investigated using cage release experiments and measures of aphid and parasitoid fitness were taken. Barley tiller number and aphid weight were increased by fertilisers, particularly under conventional treatments. Adult parasitoid size correlated positively with that of the host, M. dirhodum, whereas percentage parasitism was not affected by fertiliser treatment or host size. The results suggest that the increased parasitoid impact observed in some low-intensity or organic systems is not a direct result of fertiliser treatment. Our results indicate that fertiliser treatments that improve cereal-aphid fitness will improve parasitoid fitness as measured by parasitoid size but may not influence percentage parasitism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

All organisms face attack from many natural enemies and all in turn have some means of defence. Can resistance evolve, and if it can, why doesn't it? Recent work on fruit flies and their parasitic wasps has shed light on these questions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The type and quantity of fertilizer supplied to a crop will differ between organic and conventional farming practices. Altering the type of fertilizer a plant is provided with can influence a plant’s foliar nitrogen levels, as well as the composition and concentration of defence compounds, such as glucosinolates. Many natural enemies of insect herbivores can respond to headspace volatiles emitted by the herbivores’ host plant in response to herbivory. We propose that manipulating fertilizer type may also influence the headspace volatile profiles of plants, and as a result, the tritrophic interactions that occur between plants, their insect pests and those pests’ natural enemies. Here, we investigate a tritrophic system consisting of cabbage plants, Brassica oleracea, a parasitoid, Diaeretiella rapae, and one of its hosts, the specialist cabbage aphid Brevicoryne brassicae. Brassica oleracea plants were provided with either no additional fertilization or one of three types of fertilizer: Nitram (ammonium nitrate), John Innes base or organic chicken manure. We investigated whether these changes would alter the rate of parasitism of aphids on those plants and whether any differences in parasitism could be explained by differences in attractivity of the plants to D. rapae or attack rate of aphids by D. rapae. In free-choice experiments, there were significant differences in the percentage of B. brassicae parasitized by D. rapae between B. oleracea plants grown in different fertilizer treatments. In a series of dual-choice Y-tube olfactometry experiments, D. rapae females discriminated between B. brassicae-infested and undamaged plants, but parasitoids did not discriminate between similarly infested plants grown in different fertilizer treatments. Correspondingly, in attack rate experiments, there were no differences in the rate that D. rapae attacked B. brassicae on B. oleracea plants grown in different fertilizer treatments. These findings are of direct relevance to sustainable and conventional farming practices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In response to herbivory by insects, several plant species have been shown to produce volatiles that attract the natural enemies of those herbivores. Using a Y-tube olfactometer, we investigated responses of the aphid parasitoid Diaeretiella rapae MacIntosh (Hymenoptera: Aphidiidae) to volatiles from Arabidopsis thaliana Columbia (Brassicaceae) plants that were either undamaged, infested by the peach-potato aphid, Myzus persicae Sulzer (Homoptera: Aphididae), or mechanically damaged, as well as to volatiles from just the aphid or its honeydew. In dual-choice experiments, female D. rapae given oviposition experience on A. thaliana infested with M. persicae were significantly attracted to volatiles from A. thaliana infested with M. persicae over volatiles from undamaged A. thaliana and similarly were significantly attracted to plants that had been previously infested by M. persicae, but from which the aphids were removed, over undamaged plants. Diaeretiella rapae did not respond to volatiles from M. persicae alone, their honeydew, or plants mechanically damaged with either a pin or scissors. We conclude that an interaction between the plant and the aphid induces A. thaliana to produce volatiles, which D. rapae can learn and respond to. Poor responses of D. rapae to volatiles from an A. thaliana plant that had two leaves infested with M. persicae, with the two infested leaves being removed before testing, suggested the possibility that, at this stage of infestation, the majority of volatile production induced by M. persicae may be localized to the infested tissues of the plant. We conclude that this tritrophic interaction is a suitable model system for future investigations of the biochemical pathways involved in the production of aphid-induced volatiles attractive to natural enemies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Feeding damage to plants by insect herbivores induces the production of plant volatiles, which are attractive to the herbivores natural enemies. Little is understood about the plant biochemical pathways involved in aphid-induced plant volatile production. The aphid parasitoid Diaeretiella rapae can detect and respond to aphid-induced volatiles produced by Arabidopsis thaliana. When given experience of those volatiles, it can learn those cues and can therefore be used as a novel biosensor to detect them. The pathways involved in aphid-induced volatile production were investigated by comparing the responses of D. rapae to volatiles from a number of different transgenic mutants of A. thaliana, mutated in their octadecanoid, ethylene or salicylic acid wound-response pathways and also from wild-type plants. Plants were either undamaged or infested by the peach-potato aphid, Myzus persicae. It is demonstrated that the octadecanoid pathway and specifically the COI1 gene are required for aphid-induced volatile production. The presence of salicylic acid is also involved in volatile production. Using this model system, in combination with A. thaliana plants with single point gene mutations, has potential for the precise dissection of biochemical pathways involved in the production of aphid-induced volatiles