44 resultados para NOx-päästöt
Resumo:
We report here top-down emissions estimates for an African megacity. A boundary layer circumnavigation of Lagos, Nigeria was completed using the FAAM BAe146 aircraft as part of the AMMA project. These observations together with an inferred boundary layer height allow the flux of pollutants to be calculated. Extrapolation gives annual emissions for CO, NOx, and VOCs of 1.44 Tg yr−1, 0.03 Tg yr−1 and 0.37 Tg yr−1 respectively with uncertainties of +250/−60%. These inferred emissions are consistent with bottom-up estimates for other developing megacities and are attributed to the evaporation of fuels, mobile combustion and natural gas emissions.
Resumo:
Ozone and its precursors were measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the monsoon season 2006 as part of the African Monsoon Multidisciplinary Analysis (AMMA) campaign. One of the main features observed in the west African boundary layer is the increase of the ozone mixing ratios from 25 ppbv over the forested area (south of 12° N) up to 40 ppbv over the Sahelian area. We employ a two-dimensional (latitudinal versus vertical) meteorological model coupled with an O3-NOx-VOC chemistry scheme to simulate the distribution of trace gases over West Africa during the monsoon season and to analyse the processes involved in the establishment of such a gradient. Including an additional source of NO over the Sahelian region to account for NO emitted by soils we simulate a mean NOx concentration of 0.7 ppbv at 16° N versus 0.3 ppbv over the vegetated region further south in reasonable agreement with the observations. As a consequence, ozone is photochemically produced with a rate of 0.25 ppbv h−1 over the vegetated region whilst it reaches up to 0.75 ppbv h−1 at 16° N. We find that the modelled gradient is due to a combination of enhanced deposition to vegetation, which decreases the ozone levels by up to 11 pbbv, and the aforementioned enhanced photochemical production north of 12° N. The peroxy radicals required for this enhanced production in the north come from the oxidation of background CO and CH4 as well as from VOCs. Sensitivity studies reveal that both the background CH4 and partially oxidised VOCs, produced from the oxidation of isoprene emitted from the vegetation in the south, contribute around 5–6 ppbv to the ozone gradient. These results suggest that the northward transport of trace gases by the monsoon flux, especially during nighttime, can have a significant, though secondary, role in determining the ozone gradient in the boundary layer. Convection, anthropogenic emissions and NO produced from lightning do not contribute to the establishment of the discussed ozone gradient.
Resumo:
The year 2000 radiative forcing (RF) due to changes in O3 and CH4 (and the CH4-induced stratospheric water vapour) as a result of emissions of short-lived gases (oxides of nitrogen (NOx), carbon monoxide and non-methane hydrocarbons) from three transport sectors (ROAD, maritime SHIPping and AIRcraft) are calculated using results from five global atmospheric chemistry models. Using results from these models plus other published data, we quantify the uncertainties. The RF due to short-term O3 changes (i.e. as an immediate response to the emissions without allowing for the long-term CH4 changes) is positive and highest for ROAD transport (31mWm-2) compared to SHIP (24 mWm-2) and AIR (17 mWm-2) sectors in four of the models. All five models calculate negative RF from the CH4 perturbations, with a larger impact from the SHIP sector than for ROAD and AIR. The net RF of O3 and CH4 combined (i.e. including the impact of CH4 on ozone and stratospheric water vapour) is positive for ROAD (+16(±13)(one standard deviation) mWm-2) and AIR (+6(±5) mWm-2) traffic sectors and is negative for SHIP (-18(±10) mWm-2) sector in all five models. Global Warming Potentials (GWP) and Global Temperature change Potentials (GTP) are presented for AIR NOx emissions; there is a wide spread in the results from the 5 chemistry models, and it is shown that differences in the methane response relative to the O3 response drive much of the spread.
Resumo:
WO3-based materials as sensors for the monitor of environmental gases such as NO2 (NO + NO2) have been rapidly developed for various potential applications (stationary and mobile uses). It has been reported that these materials are highly sensitive to NOx with the sensitivity further enhanced by adding precious group metals (PGM such as Pt, Pd, Au, etc.). However, there has been limited work in revealing the sensing mechanism for these gases over the WO3-based sensors. In particular, the role of promoter is not yet clear though speculations on their catalytic, electronic and structural effects have been made in the past. In parallel to these PGM promoters here we report,for the first time, that Ag promotion can also enhance WO3 sensitivity significantly. In addition, this promotion decreases the optimum sensor temperature of 300 degreesC for Most WO3-based sensors, to below 200 degreesC. Characterizations (XRD, TEM, and impedance measurement) reveal that there is no significant bulk structure change nor particle size alteration in the WO3 phases during the NO exposure. However, it is found that the Ag doping creates a high concentration of oxygen vacancies in form of coordinated crystallographic shear (CS) planes onto the underneath WO3. It is thus proposed that the Ag particle facilitates the oxidative conversion of NO to NO2 followed by a subsequent NO2 adsorption on the defective WO, sites created at the Ag-WO3 interface; hence, accounting for the high molecular sensitivity. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We report here top-down emissions estimates for an African megacity. A boundary layer circumnavigation of Lagos, Nigeria was completed using the FAAM BAe146 aircraft as part of the AMMA project. These observations together with an inferred boundary layer height allow the flux of pollutants to be calculated. Extrapolation gives annual emissions for CO, NOx, and VOCs of 1.44 Tg yr(-1), 0.03 Tg yr(-1) and 0.37 Tg yr(-1) respectively with uncertainties of (+250)/(-60%). These inferred emissions are consistent with bottom-up estimates for other developing megacities and are attributed to the evaporation of fuels, mobile combustion and natural gas emissions.
Resumo:
Ozone and its precursors were measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the monsoon season 2006 as part of the African Monsoon Multidisciplinary Analysis (AMMA) campaign. One of the main features observed in the west African boundary layer is the increase of the ozone mixing ratios from 25 ppbv over the forested area (south of 12 degrees N) up to 40 ppbv over the Sahelian area. We employ a two-dimensional ( latitudinal versus vertical) meteorological model coupled with an O-3-NOx-VOC chemistry scheme to simulate the distribution of trace gases over West Africa during the monsoon season and to analyse the processes involved in the establishment of such a gradient. Including an additional source of NO over the Sahelian region to account for NO emitted by soils we simulate a mean NOx concentration of 0.7 ppbv at 16 degrees N versus 0.3 ppbv over the vegetated region further south in reasonable agreement with the observations. As a consequence, ozone is photochemically produced with a rate of 0.25 ppbv h(-1) over the vegetated region whilst it reaches up to 0.75 ppbv h(-1) at 16 degrees N. We find that the modelled gradient is due to a combination of enhanced deposition to vegetation, which decreases the ozone levels by up to 11 pbbv, and the aforementioned enhanced photochemical production north of 12 degrees N. The peroxy radicals required for this enhanced production in the north come from the oxidation of background CO and CH4 as well as from VOCs. Sensitivity studies reveal that both the background CH4 and partially oxidised VOCs, produced from the oxidation of isoprene emitted from the vegetation in the south, contribute around 5-6 ppbv to the ozone gradient. These results suggest that the northward transport of trace gases by the monsoon flux, especially during nighttime, can have a significant, though secondary, role in determining the ozone gradient in the boundary layer. Convection, anthropogenic emissions and NO produced from lightning do not contribute to the establishment of the discussed ozone gradient.
Resumo:
The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO2 capture is employed, the increase in other air pollutants such as NOx and NH3 leads to higher eutrophication and acidification potentials.
Resumo:
Background Homocysteine and asymmetric dimethylarginine (ADMA) affect nitric oxide (NO) concentration, thereby contributing to cardiovascular disease (CVD). Both amino acids can be reduced in vivo by estrogen. Variation in the estrogen receptor (ER) may influence homocysteine and ADMA, yet no information is available on associations with single nucleotide polymorphisms in the estrogen receptor genes ER alpha (PvuII and XbaI) and ER beta (1730G -> A and cx+56 G -> A). Objective To find relationships between common polymorphisms associated with cardiovascular disease and cardiovascular risk factors homocysteine and ADMA. Methods In a cross-sectional study with healthy postmenopausal women (n = 89), homocysteine, ADMA, nitric oxide metabolites (NOx), plasma folate and ER alpha and beta polymorphisms ER alpha PvuII, ER alpha XbaI; ER beta 1730G -> A (AluI), ER beta cx+56 G -> A (Tsp5091) were analyzed. Results Women who are homozygotic for ER beta cx+56 G -> A A/A exhibited higher homocysteine (p = 0.012) and NOx (p = 0.056) levels than wildtype or heterozygotes. NOx concentration was also significantly affected by ER beta 1730 G -> A polymorphism (p = 0.025). The ER beta (p < 0.001) and ER alpha (p < 0.001) polymorphisms were in linkage disequilibrium. Conclusions Women who are homozygotic for ER beta cx+S6 G -> A A/A may be at increased risk for cardiovascular disease due to higher homocysteine levels.
Resumo:
Soya isoflavones are thought to be cardioprotective due to their structural similarity to oestrogen. In order to investigate the effect of soya isoflavones on markers of endothelial function we conducted a randomised, double-blind, placebo-controlled, cross-over study with thirty healthy postmenopausal women. The women consumed cereal bars, with or without soya isoflavones (50 mg/d), for 8 weeks, separated by an 8-week washout period. Systemic arterial complince (SAC), isobaric arterial compliance (IAC), flow-mediated endothelium-dependent vasodilation (FMD) and nitroglycerine-mediated endothelium-independent vasodilation (NMD) were measured at the beginning of the study and after each intervention period. Blood pressure (BP) and plasma concentrations of nitrite and nitrate (NOx) and endothelin-1 (ET-1) were measured at the beginning and end of each intervention period. NMD was 13.4 (sem 2.0) % at baseline and 15.5 (sem 1.1) % after isoflavone treatment compared with 12.4 (sem 1.0) % after placebo treatment (P=0.03). NOx increased from 27.7 (sem 2.7) to 31.1 (sem 3.2) mu m after isoflavones treatment compared with 25.4 (sem 1.5) to 20.4 (sem 1.1) mu m after placebo treatment (P=0.003) and a significant increase in the NOx:ET-1 ratio (P=0.005) was observed after the isoflavone treatment compared with placebo. A significant difference in SAC after the isoflavone and placebo treatment was observed (P=0.04). No significant difference was found in FMD, IAC, BP and ET-1. In conclusion, 8 weeks' consumption of cereals bars enriched with 50 mg soya isoflavones/d increased plasma NOx concentrations and improved endothelium-independent vasodilation in healthy postmenopausal women.
Resumo:
To estimate the impact of emissions by road, aircraft and ship traffic on ozone and OH in the present-day atmosphere six different atmospheric chemistry models have been used. Based on newly developed global emission inventories for road, ship and aircraft emission data sets each model performed sensitivity simulations reducing the emissions of each transport sector by 5%. The model results indicate that on global annual average lower tropospheric ozone responds most sensitive to ship emissions (50.6%±10.9% of the total traffic induced perturbation), followed by road (36.7%±9.3%) and aircraft exhausts (12.7%±2.9%), respectively. In the northern upper troposphere between 200–300 hPa at 30–60° N the maximum impact from road and ship are 93% and 73% of the maximum effect of aircraft, respectively. The latter is 0.185 ppbv for ozone (for the 5% case) or 3.69 ppbv when scaling to 100%. On the global average the impact of road even dominates in the UTLS-region. The sensitivity of ozone formation per NOx molecule emitted is highest for aircraft exhausts. The local maximum effect of the summed traffic emissions on the ozone column predicted by the models is 0.2 DU and occurs over the northern subtropical Atlantic extending to central Europe. Below 800 hPa both ozone and OH respond most sensitively to ship emissions in the marine lower troposphere over the Atlantic. Based on the 5% perturbation the effect on ozone can exceed 0.6% close to the marine surface (global zonal mean) which is 80% of the total traffic induced ozone perturbation. In the southern hemisphere ship emissions contribute relatively strongly to the total ozone perturbation by 60%–80% throughout the year. Methane lifetime changes against OH are affected strongest by ship emissions up to 0.21 (± 0.05)%, followed by road (0.08 (±0.01)%) and air traffic (0.05 (± 0.02)%). Based on the full scale ozone and methane perturbations positive radiative forcings were calculated for road emissions (7.3±6.2 mWm−2) and for aviation (2.9±2.3 mWm−2). Ship induced methane lifetime changes dominate over the ozone forcing and therefore lead to a net negative forcing (−25.5±13.2 mWm−2).
Resumo:
The transport sector emits a wide variety of gases and aerosols, with distinctly different characteristics which influence climate directly and indirectly via chemical and physical processes. Tools that allow these emissions to be placed on some kind of common scale in terms of their impact on climate have a number of possible uses such as: in agreements and emission trading schemes; when considering potential trade-offs between changes in emissions resulting from technological or operational developments; and/or for comparing the impact of different environmental impacts of transport activities. Many of the non-CO2 emissions from the transport sector are short-lived substances, not currently covered by the Kyoto Protocol. There are formidable difficulties in developing metrics and these are particularly acute for such short-lived species. One difficulty concerns the choice of an appropriate structure for the metric (which may depend on, for example, the design of any climate policy it is intended to serve) and the associated value judgements on the appropriate time periods to consider; these choices affect the perception of the relative importance of short- and long-lived species. A second difficulty is the quantification of input parameters (due to underlying uncertainty in atmospheric processes). In addition, for some transport-related emissions, the values of metrics (unlike the gases included in the Kyoto Protocol) depend on where and when the emissions are introduced into the atmosphere – both the regional distribution and, for aircraft, the distribution as a function of altitude, are important. In this assessment of such metrics, we present Global Warming Potentials (GWPs) as these have traditionally been used in the implementation of climate policy. We also present Global Temperature Change Potentials (GTPs) as an alternative metric, as this, or a similar metric may be more appropriate for use in some circumstances. We use radiative forcings and lifetimes from the literature to derive GWPs and GTPs for the main transport-related emissions, and discuss the uncertainties in these estimates. We find large variations in metric (GWP and GTP) values for NOx, mainly due to the dependence on location of emissions but also because of inter-model differences and differences in experimental design. For aerosols we give only global-mean values due to an inconsistent picture amongst available studies regarding regional dependence. The uncertainty in the presented metric values reflects the current state of understanding; the ranking of the various components with respect to our confidence in the given metric values is also given. While the focus is mostly on metrics for comparing the climate impact of emissions, many of the issues are equally relevant for stratospheric ozone depletion metrics, which are also discussed.
Resumo:
The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period. This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental). Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv (note the non-IUPAC adoption in this manuscript of pptv and ppbv, equivalent to pmol mol−1 and nmol mol−1 to reflect common practice). Consistency with these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens. Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.
Resumo:
The North Atlantic Marine Boundary Layer Experiment (NAMBLEX), involving over 50 scientists from 12 institutions, took place at Mace Head, Ireland (53.32° N, 9.90° W), between 23 July and 4 September 2002. A wide range of state-of-the-art instrumentation enabled detailed measurements of the boundary layer structure and atmospheric composition in the gas and aerosol phase to be made, providing one of the most comprehensive in situ studies of the marine boundary layer to date. This overview paper describes the aims of the NAMBLEX project in the context of previous field campaigns in the Marine Boundary Layer (MBL), the overall layout of the site, a summary of the instrumentation deployed, the temporal coverage of the measurement data, and the numerical models used to interpret the field data. Measurements of some trace species were made for the first time during the campaign, which was characterised by predominantly clean air of marine origin, but more polluted air with higher levels of NOx originating from continental regions was also experienced. This paper provides a summary of the meteorological measurements and Planetary Boundary Layer (PBL) structure measurements, presents time series of some of the longer-lived trace species (O3, CO, H2, DMS, CH4, NMHC, NOx, NOy, PAN) and summarises measurements of other species that are described in more detail in other papers within this special issue, namely oxygenated VOCs, HCHO, peroxides, organo-halogenated species, a range of shorter lived halogen species (I2, OIO, IO, BrO), NO3 radicals, photolysis frequencies, the free radicals OH, HO2 and (HO2+Σ RO2), as well as a summary of the aerosol measurements. NAMBLEX was supported by measurements made in the vicinity of Mace Head using the NERC Dornier-228 aircraft. Using ECMWF wind-fields, calculations were made of the air-mass trajectories arriving at Mace Head during NAMBLEX, and were analysed together with both meteorological and trace-gas measurements. In this paper a chemical climatology for the duration of the campaign is presented to interpret the distribution of air-mass origins and emission sources, and to provide a convenient framework of air-mass classification that is used by other papers in this issue for the interpretation of observed variability in levels of trace gases and aerosols.
Resumo:
The Cambridge Tropospheric Trajectory model of Chemistry and Transport (CiTTyCAT), a Lagrangian chemistry model, has been evaluated using atmospheric chemical measurements collected during the East Atlantic Summer Experiment 1996 (EASE '96). This field campaign was part of the UK Natural Environment Research Council's (NERC) Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) programme, conducted at Mace Head, Republic of Ireland, during July and August 1996. The model includes a description of gas-phase tropospheric chemistry, and simple parameterisations for surface deposition, mixing from the free troposphere and emissions. The model generally compares well with the measurements and is used to study the production and loss of O3 under a variety of conditions. The mean difference between the hourly O3 concentrations calculated by the model and those measured is 0.6 ppbv with a standard deviation of 8.7 ppbv. Three specific air-flow regimes were identified during the campaign – westerly, anticyclonic (easterly) and south westerly. The westerly flow is typical of background conditions for Mace Head. However, on some occasions there was evidence of long-range transport of pollutants from North America. In periods of anticyclonic flow, air parcels had collected emissions of NOx and VOCs immediately before arriving at Mace Head, leading to O3 production. The level of calculated O3 depends critically on the precise details of the trajectory, and hence on the emissions into the air parcel. In several periods of south westerly flow, low concentrations of O3 were measured which were consistent with deposition and photochemical destruction inside the tropical marine boundary layer.
Resumo:
Co-combustion performance trials of Meat and Bone Meal (MBM) and peat were conducted using a bubbling fluidized bed (BFB) reactor. In the combustion performance trials the effects of the co-combustion of MBM and peat on flue gas emissions, bed fluidization, ash agglomeration tendency in the bed and the composition and quality of the ash were studied. MBM was mixed with peat at 6 levels between 15% and 100%. Emissions were predominantly below regulatory limits. CO concentrations in the flue gas only exceeded the 100 mg/m3 limit upon combustion of pure MBM. SO2 emissions were found to be over the limit of 50 mg/m3, while in all trials NOx emissions were below the limit of 300 mg/m3. The HCl content of the flue gases was found to vary near the limit of 30 mg/m3. VOCs however were within their limits. The problem of bed agglomeration was avoided when the bed temperature was about 850 °C and only 20% MBM was co-combusted. This study indicates that a pilot scale BFB reactor can, under optimum conditions, be operated within emission limits when MBM is used as a co-fuel with peat. This can provide a basis for further scale-up development work in industrial scale BFB applications