41 resultados para NON-ALCOHOLIC FATTY LIVER DISEASE
Resumo:
Aims/hypothesis: Variants of the TCF7L2 gene predict the development of type 2 diabetes mellitus (T2DM). We investigated the associations between gene variants of TCF7L2 and clinical features of the metabolic syndrome (MetS) (an entity often preceeding T2DM), and their interaction with non-genetic factors, including plasma saturated fatty acids (SFA) concentration and insulin resistance (IR). Methods: Fasting lipid profiles, insulin sensitivity, insulin secretion, anthropometrics, blood pressure and 10 gene variations of the TCF7L2 gene were determined in 450 subjects with MetS. Results: Several single nucleotide polymorphisms (SNP) showed phenotypic associations independent of SFA or IR. Carriers of the rare T allele of rs7903146, and of three other SNPs in linkage disequilibrium with rs7903146, had lower blood pressure and insulin secretion. High IR and the presence of the T-allele of rs7903146 acted synergistically to define those with reduced insulin secretion. Carriers of the minor allele of rs290481 exhibited an altered lipid profile, with increased plasma levels of apolipoprotein B, non-esterified fatty acids, cholesterol and apolipoprotein B in triglyceride rich lipoproteins, and LDL cholesterol. Carriers of the minor allele of rs11196224 that had higher plasma SFA levels showed elevated procoagulant/proinflammatory biomarkers, impaired insulin secretion and increased IR, whereas carriers of the minor allele of rs17685538 with high plasma SFA levels exhibited higher blood pressure. Conclusions/interpretation: SNP in the TCF7L2 gene are associated with differences in insulin secretion, blood pressure, blood lipids and coagulation in MetS patients, and may be modulated by SFA in plasma or IR.
Resumo:
Fish-oil supplementation can reduce circulating triacylglycerol (TG) levels and cardiovascular risk. This study aimed to assess independent associations between changes in platelet eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and fasting and postprandial (PP) lipoprotein concentrations and LDL oxidation status, following fish-oil intervention. Fiftyfive mildly hypertriacylglycerolaemic (TG 1·5–4·0 mmol/l) men completed a double-blind placebo controlled cross over study, where individuals consumed 6 g fish oil (3 g EPA � DHA) or 6 g olive oil (placebo)/d for two 6-week intervention periods, with a 12-week wash-out period in between. Fish-oil intervention resulted in a significant increase in the platelet phospholipid EPA (+491 %, P,0·001) and DHA (+44 %, P,0·001) content and a significant decrease in the arachidonic acid (210 %, P,0·001) and g-linolenic acid (224 %, P,0·001) levels. A 30% increase in ex vivo LDL oxidation (P,0·001) was observed. In addition, fish oil resulted in a significant decrease in fasting and PP TG levels (P,0·001), PP non-esterified fatty acid (NEFA) levels, and in the percentage LDL as LDL-3 (P�0·040), and an increase in LDLcholesterol (P�0·027). In multivariate analysis, changes in platelet phospholipid DHA emerged as being independently associated with the rise in LDL-cholesterol, accounting for 16% of the variability in this outcome measure (P�0·030). In contrast, increases in platelet EPA were independently associated with the reductions in fasting (P�0·046) and PP TG (P�0·023), and PP NEFA (P�0·015), explaining 15–20% and 25% of the variability in response respectively. Increases in platelet EPA � DHA were independently and positively associated with the increase in LDL oxidation (P�0·011). EPA and DHA may have differential effects on plasma lipids in mildly hypertriacylglycerolaemic men.
Resumo:
OBJECTIVE: To investigate relationships between body fat and its distribution and carbohydrate and lipid tolerance using statistical comparisons in post-menopausal women. DESIGN: Sequential meal, postprandial study (600 min) which included a mixed standard breakfast (30 g fat) and lunch (44 g fat) given at 0 and 270 min, respectively, after an overnight fast. SUBJECTS: Twenty-eight post-menopausal women with a diverse range of body weight (body mass index (BMI), mean 27.2, range 20.5-38.8 kg/m2) and abdominal fat deposition (waist, mean 86.4, range 63.5-124.0 cm). Women with BMI <18 or >37 kg/m2, age>80 y and taking hormone replacement therapy (HRT) were excluded. MEASUREMENTS: Anthropometric measurements were performed to assess total and regional fat deposits. The concentrations of plasma total cholesterol, high density lipoprotein (HDL) cholesterol, triacylglycerol (TAG), glucose, insulin (ins), non-esterified fatty acids (NEFA) and apolipoprotein (apo) B-48 were analysed in plasma collected at baseline (fasted state) and at 13 postprandial time points for a 600 min period. RESULTS: Insulin concentrations in the fasted and fed state were significantly correlated with all measures of adiposity (BMI, waist, waist-hip ratio (W/H), waist-height ratio (W/Ht) and sum of skinfold thickness (SSk)). After controlling for BMI, waist remained significantly and positively associated with fasted insulin (r=0.559) with waist contributing 53% to the variability after multiple regression analysis. After controlling for waist, BMI remained significantly correlated with postprandial (IAUC) insulin (r=0.535) contributing 66% of the variability of this measurement. No association was found between any measures of adiposity and glucose concentrations, although insulin concentration in relation to glucose concentration (glucose-insulin ratio) was significantly negatively correlated with all measures of adiposity. A significant positive correlation was found between fasted TAG and BMI (r=0.416), waist (r=0.393) and Ssk (r=0.457) and postprandial (AUC) TAG with BMI (r=0.385) and Ssk (r=0.406). A significantly higher postprandial apolipoprotein (apo) B-48 response was observed in those women with high BMI (>27 kg/m2). Fasting levels of NEFA were significantly and positively correlated with all measures of adiposity (except W/H). No association was found between cholesterol containing particles and any measure of adiposity. CONCLUSION: Hyperinsulinaemia associated with increasing body fat and central fat distribution is associated with normal glucose but not TAG or NEFA concentrations in postmenopausal women.
Resumo:
OBJECTIVE: To determine the effect of altering meal frequency on postprandial lipaemia and associated parameters. DESIGN: A randomized open cross over study to examine the programming effects of altering meal frequency. A standard test meal was given on three occasions following: (i) the normal diet; (ii) a period of two weeks on a nibbling and (iii) a period of two weeks on a gorging diet. SETTING: Free living subjects associated with the University of Surrey. SUBJECTS: Eleven female volunteers (age 22 +/- 0.89 y) were recruited. INTERVENTIONS: The subjects were requested to consume the same foods on either a nibbling diet (12 meals per day) or a gorging diet (three meals per day) for a period of two weeks. The standard test meal containing 80 g fat, 63 g carbohydrate and 20 g protein was administered on the day prior to the dietary intervention and on the day following each period of intervention. MAJOR OUTCOME MEASURES: Fasting and postprandial blood samples were taken for the analysis of plasma triacylglycerol, non-esterified fatty acids, glucose, immunoreactive insulin, glucose-dependent insulinotropic polypeptide levels (GIP) and glucagon-like peptide (GLP-1), fasting total, low density lipoprotein (LDL)- and high density lipoprotein (HDL)-cholesterol concentrations and postheparin lipoprotein lipase (LPL) activity measurements. Plasma paracetamol was measured following administration of a 1.5 g paracetamol load with the meal as an index of gastric emptying. RESULTS: The compliance to the two dietary regimes was high and there were no significant differences between the nutrient intakes on the two intervention diets. There were no significant differences in fasting or postprandial plasma concentrations of triacylglycerol, non-esterified fatty acids, glucose, immunoreactive insulin, GIP and GLP-1 levels, in response to the standard test meal following the nibbling or gorging dietary regimes. There were no significant differences in fasting total or LDL-cholesterol concentrations, or in the 15 min postheparin lipoprotein lipase activity measurements. There was a significant increase in HDL-cholesterol in the subjects following the gorging diet compared to the nibbling diet. DISCUSSION: The results suggest that previous meal frequency for a period of two weeks in young healthy women does not alter the fasting or postprandial lipid or hormonal response to a standard high fat meal. CONCLUSIONS: The findings of this study did not confirm the previous studies which suggested that nibbling is beneficial in reducing the concentrations of lipid and hormones. The rigorous control of diet content and composition in the present study compared with others, suggest reported effects of meal frequency may be due to unintentional alteration in nutrient and energy intake in previous studies.
Resumo:
OBJECTIVE: Substrate and hormone responses to meals of differing fat content were evaluated in normal subjects in order to investigate mechanisms underlying the regulation of postprandial lipoprotein concentration. DESIGN: A randomised cross-over study with three different meals on three occasions. SETTING: Free-living subjects associated with Surrey University. SUBJECTS: Ten male volunteers (aged 18-23 years) were recruited. INTERVENTIONS: Three test meals containing 20, 40 or 80 g fat but identical carbohydrate and protein content were randomly allocated to volunteers. MAJOR OUTCOME MEASURES: Pre- and postprandial blood samples were taken for the analysis of plasma triacylglycerol, non-esterified fatty acids, glucose, immunoreactive insulin and glucose-dependent insulinotrophic polypeptide levels and postheparin lipoprotein lipase activity measurements. RESULTS: Peak triacylglycerol concentrations and lipoprotein lipase activity measurements were significantly higher following the 80 g than the 20 g fat meal (P = 0.009 and P = 0.049 respectively). Areas under the glucose-dependent insulinotrophic polypeptide time-response concentration curves were significantly higher following the 80 g compared with the 20 g fat meal (P = 0.04), but no differences in insulin response to the meals were seen. The 30-360 min decrease in the non-esterified fatty acid concentration was less following the 80 g than the 20 g meal (P = 0.001). CONCLUSIONS: The results suggest that glucose-dependent insulinotrophic polypeptide may mediate increased lipoprotein lipase activity in response to fat-containing meals and may play a role in circulating lipoprotein homeostasis. This mechanism may be overloaded with high fat meals with adverse consequences on circulating triacylglycerol and NEFA concentrations.
Resumo:
Objective To examine the impact of increasing numbers of metabolic syndrome (MetS) components on postprandial lipaemia. Methods Healthy men (n = 112) underwent a sequential meal postprandial investigation, in which blood samples were taken at regular intervals after a test breakfast (0 min) and lunch (330 min). Lipids and glucose were measured in the fasting sample, with triacylglycerol (TAG), non-esterified fatty acids and glucose analysed in the postprandial samples. Results Subjects were grouped according to the number of MetS components regardless of the combinations of components (0/1, 2, 3 and 4/5). As expected, there was a trend for an increase in body mass index, blood pressure, fasting TAG, glucose and insulin, and a decrease in fasting high-density lipoprotein cholesterol with increasing numbers of MetS components (P≤0.0004). A similar trend was observed for the summary measures of the postprandial TAG and glucose responses. For TAG, the area under the curve (AUC) and maximum concentration (maxC) were significantly greater in men with ≥ 3 than < 3 components (P < 0.001), whereas incremental AUC was greater in those with 3 than 0/1 and 2, and 4/5 compared with 2 components (P < 0.04). For glucose, maxC after the test breakfast (0-330 min) and total AUC (0-480 min) were higher in men with ≥ 3 than < 3 components (P≤0.001). Conclusions Our data analysis has revealed a linear trend between increasing numbers of MetS components and magnitude (AUC) of the postprandial TAG and glucose responses. Furthermore, the two meal challenge discriminated a worsening of postprandial lipaemic control in subjects with ≥ 3 MetS components.
Resumo:
BACKGROUND/OBJECTIVES: Phytoestrogens are estradiol-like natural compounds found in plants that have been associated with protective effects against chronic diseases, including some cancers, cardiovascular diseases and osteoporosis. The purpose of this study was to estimate the dietary intake of phytoestrogens, identify their food sources and their association with lifestyle factors in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. SUBJECTS/METHODS: Single 24-hour dietary recalls were collected from 36 037 individuals from 10 European countries, aged 35–74 years using a standardized computerized interview programe (EPIC-Soft). An ad hoc food composition database on phytoestrogens (isoflavones, lignans, coumestans, enterolignans and equol) was compiled using data from available databases, in order to obtain and describe phytoestrogen intakes and their food sources across 27 redefined EPIC centres. RESULTS: Mean total phytoestrogen intake was the highest in the UK health-conscious group (24.9 mg/day in men and 21.1 mg/day in women) whereas lowest in Greece (1.3 mg/day) in men and Spain-Granada (1.0 mg/day) in women. Northern European countries had higher intakes than southern countries. The main phytoestrogen contributors were isoflavones in both UK centres and lignans in the other EPIC cohorts. Age, body mass index, educational level, smoking status and physical activity were related to increased intakes of lignans, enterolignans and equol, but not to total phytoestrogen, isoflavone or coumestan intakes. In the UK cohorts, the major food sources of phytoestrogens were soy products. In the other EPIC cohorts the dietary sources were more distributed, among fruits, vegetables, soy products, cereal products, non-alcoholic and alcoholic beverages. CONCLUSIONS: There was a high variability in the dietary intake of total and phytoestrogen subclasses and their food sources across European regions.
Resumo:
An estimated 3% of the global population are infected with hepatitis C virus (HCV), and the majority of these individuals will develop chronic liver disease. As with other chronic viruses, establishment of persistent infection requires that HCV-infected cells must be refractory to a range of pro-apoptotic stimuli. In response to oxidative stress, amplification of an outward K(+) current mediated by the Kv2.1 channel, precedes the onset of apoptosis. We show here that in human hepatoma cells either infected with HCV or harboring an HCV subgenomic replicon, oxidative stress failed to initiate apoptosis via Kv2.1. The HCV NS5A protein mediated this effect by inhibiting oxidative stress-induced p38 MAPK phosphorylation of Kv2.1. The inhibition of a host cell K(+) channel by a viral protein is a hitherto undescribed viral anti-apoptotic mechanism and represents a potential target for antiviral therapy.
Resumo:
Resistant starch (RS) has been shown to beneficially affect insulin sensitivity in healthy individuals and those with metabolic syndrome, but its effects on human type 2 diabetes (T2DM) are unknown. This study aimed to determine the effects of increased RS consumption on insulin sensitivity and glucose control and changes in postprandial metabolites and body fat in T2DM. Seventeen individuals with well-controlled T2DM (HbA1c 46.6±2 mmol/mol) consumed, in a random order, either 40 g of type 2 RS (HAM-RS2) or a placebo, daily for 12 weeks with a 12-week washout period in between. At the end of each intervention period, participants attended for three metabolic investigations: a two-step euglycemic–hyperinsulinemic clamp combined with an infusion of [6,6-2H2] glucose, a meal tolerance test (MTT) with arterio-venous sampling across the forearm, and whole-body imaging. HAM-RS2 resulted in significantly lower postprandial glucose concentrations (P=0.045) and a trend for greater glucose uptake across the forearm muscle (P=0.077); however, there was no effect of HAM-RS2 on hepatic or peripheral insulin sensitivity, or on HbA1c. Fasting non-esterified fatty acid (NEFA) concentrations were significantly lower (P=0.004) and NEFA suppression was greater during the clamp with HAM-RS2 (P=0.001). Fasting triglyceride (TG) concentrations and soleus intramuscular TG concentrations were significantly higher following the consumption of HAM-RS2 (P=0.039 and P=0.027 respectively). Although fasting GLP1 concentrations were significantly lower following HAM-RS2 consumption (P=0.049), postprandial GLP1 excursions during the MTT were significantly greater (P=0.009). HAM-RS2 did not improve tissue insulin sensitivity in well-controlled T2DM, but demonstrated beneficial effects on meal handling, possibly due to higher postprandial GLP1.
Resumo:
Long-chain n-3 polyunsaturated fatty acids are found in oily fish and in fish oils and similar preparations. Substantial evidence from epidemiological and case-control studies indicates that consumption of fish, oily fish and long-chain n-3 fatty acids reduces risk of cardiovascular mortality. Secondary prevention studies using long-chain n-3 fatty acids in patients post-myocardial infarction have shown a reduction in total and cardiovascular mortality with an especially potent effect on sudden death. Long-chain n-3 fatty acids have been shown to beneficially modify a range of cardiovascular risk factors, which may result in primary cardiovascular prevention. However, reduced non-fatal and fatal events and a reduction in sudden death probably involve other mechanisms. Reduced thrombosis following long-chain n-3 fatty acids may play a role. A decrease in arrhythmias is a favoured mechanism of action of long-chain n-3 fatty acids and is supported by cell culture and animal studies. However human trials using implantable cardiac defibrillators have produced inconsistent findings and a recent meta-analysis does not support this mechanism of action. An alternative mechanism of action may be stabilisation of atherosclerotic plaques by long-chain n-3 fatty acids. This is suggested by one published human study which showed that incorporation of long-chain n-3 fatty acids into plaques collected at carotid endarterectomy resulted in fewer macrophages in the plaque and a morphology indicative of increased stability. These findings are supported from observations in an animal model and suggest that the primary effect of long-chain n-3 fatty acids might be on macrophages within the plaque.
Resumo:
Background N-3 polyunsaturated fatty acids (PUFAs) from oily fish protect against death from cardiovascular disease. We aimed to assess the hypothesis that incorporation of n-3 and n-6 PUFAs into advanced atherosclerotic plaques increases and decreases plaque stability, respectively. Methods We did a randomised controlled trial of patients awaiting carotid endarterectomy. We randomly allocated patients control, sunflower oil (n-6), or fish-oil (n-3) capsules until surgery. Primary outcome was plaque morphology indicative of stability or instability, and outcome measures were concentrations of EPA, DHA, and linoleic acid in carotid plaques; plaque morphology; and presence of macrophages in plaques. Analysis was per protocol. Findings 188 patients were enrolled and randomised; 18 withdrew and eight were excluded. Duration of oil treatment was 7-189 days (median 42) and did not differ between groups. The proportions of EPA and DHA were higher in carotid plaque fractions in patients receiving fish oil compared with those receiving control (absolute difference 0.5 [95% CI 0.3-0.7], 0.4 [0.1-0.6], and 0.2 [0.1-0.4] g/100 g total fatty acids for EPA; and 0.3 [0.0-0.8], 0.4 [0.1-0.7], and 0.3 [0.1-0.6] g/100 g total fatty acids for DHA; in plaque phospholipids, cholesteryl esters, and triacylglycerols, respectively). Sunflower oil had little effect on the fatty acid composition of lipid fractions. Fewer plaques from patients being treated with fish oil had thin fibrous caps and signs of inflammation and more plaques had thick fibrous caps and no signs of inflammation, compared with plaques in patients in the control and sunflower oil groups (odds ratio 0.52 [95% CI 0.24-0.89] and 1.19 [1.02-1.57] vs control; 0.49 [0.23-0.90] and 1.16 [1.01-1.53] vs sunflower oil). The number of macrophages in plaques from patients receiving fish oil was lower than in the other two groups. Carotid plaque morphology and infiltration by macrophages did not differ between control and sunflower oil groups. Interpretation Atherosclerotic plaques readily incorporate n-3 PUFAs from fish-oil supplementation, inducing changes that can enhance stability of atherosclerotic plaques. By contrast, increased consumption of n-6 PUFAs does not affect carotid plaque fatty-acid composition or stability over the time course studied here. Stability of plaques could explain reductions in non-fatal and fatal cardiovascular events associated with increased n-3 PUFA intake.
Resumo:
Regular consumption of green tea polyphenols (GTP) is thought to reduce the risk of cardiovascular disease (CVD) but has also been associated with liver toxicity. The present trial aimed to assess the safety and potential CVD health beneficial effects of daily GTP consumption. We conducted a placebo-controlled parallel study to evaluate the chronic effects of GTP on liver function and CVD risk biomarkers in healthy men. Volunteers (treatment: n = 17, BMI 26.7 +/- 3.3 kg/m(2), age 41 +/- 9 y; placebo, n = 16, BMI 25.4 +/- 3.3 kg/m(2), age 40 +/- 10 y) consumed for 3 wk 6 capsules per day (2 before each principal meal) containing green tea extracts (equivalent to 714 mg/d GTP) or placebo. At the beginning and end of the intervention period, we collected blood samples from fasting subjects and measured vascular tone using Laser Doppler lontophoresis. Biomarkers of liver function and CVD risk (including blood pressure, plasma lipids, and asymmetric dimethylarginine) were unaffected by GTP consumption. After treatment, the ratio of total:HDL cholesterol was significantly reduced in participants taking GTP capsules compared with baseline. Endothelial-dependent and -independent vascular reactivity did not significantly differ between treatments. In conclusion, the present data suggests that the daily consumption of high doses of GTP by healthy men for 3 wk is safe but without effects on CVD risk biomarkers other than the total:HDL cholesterol ratio. J. Nutr. 139: 58-62, 2009.
Resumo:
Objective Omega-3 polyunsaturated fatty acids (n-3 PUFA) may protect against the development of cardiovascular disease (CVD). Genotype at key genes such as nitric oxide synthase (NOS3) may determine responsiveness to fatty acids. Gene–nutrient interactions may be important in modulating the development of CVD, particularly in high-risk individuals with the metabolic syndrome (MetS). Methods Biomarkers of CVD risk, plasma fatty acid composition, and NOS3 single nucleotide polymorphism (SNP) genotype (rs11771443, rs1800783, rs1800779, rs1799983, rs3918227, and rs743507) were determined in 450 individuals with the MetS from the LIPGENE dietary intervention cohort. The effect of dietary fat modification for 12 weeks on metabolic indices of the MetS was determined to understand potential NOS3 gene–nutrient interactions. Results Several markers of inflammation and dyslipidaemia were significantly different between the genotype groups. A significant gene–nutrient interaction was observed between the NOS3 rs1799983 SNP and plasma n-3 PUFA status on plasma triacylglycerol (TAG) concentrations. Minor allele carriers (AC + AA) showed an inverse association with significantly higher plasma TAG concentrations in those with low plasma n-3 PUFA status and vice versa but the major allele homozygotes (CC) did not. Following n-3 PUFA supplementation, plasma TAG concentrations of minor allele carriers of rs1799983 were considerably more responsive to changes in plasma n-3 PUFA, than major allele homozygotes. Conclusions Carriers of the minor allele at rs1799983 in NOS3 have plasma TAG concentrations which are more responsive to n-3 PUFA. This suggests that these individuals might show greater beneficial effects of n-3 PUFA consumption to reduce plasma TAG concentrations.
Resumo:
Objective: To examine the effects of the consumption of fish oils on the gene expression of lipoprotein lipase (LPL, EC 3.1.1.34) in human adipose tissue. In order to measure LPL mRNA in adipose tissue samples obtained by needle biopsy from human volunteers a competitive, reverse transcriptase PCR (RT-PCR) protocol was developed. Design: A randomised controlled, single blind cross over dietary study which compared the effects of a low level n-3 polyunsaturated fatty acids (PUFA) using normal foods enriched with eicosapentaenoic (EPA) and docosahexaenoic (DHA) (test diet), with non-enriched but otherwise identical foods (control). The diets were consumed for a period of 22 d with a wash out period of 5 months between the diets. Setting: Free-living individuals associated with the University of Surrey. Subjects: Six male subjects with a mean (±sd) age of 51.2±3.6 y were recruited. Major Outcome Measures: Pre-and postprandial blood samples were taken for the measurement of triacylglycerol (TAG), postheparin LPL activity and adipose tissue samples for the measurement of LPL mRNA levels. Results: Mean LPL expression values were 4.12´105 molecules of LPL mRNA per ng total RNA on the control diet and 4.60´105 molecules of LPL mRNA per ng total RNA on the n-3 PUFA enriched (test) diet. There was no significant difference between the levels of LPL expression following each diet, consistent with the lack of change in TAG levels in response to increased dietary n-3 PUFA intake. However, the change in LPL expression (Test-Control diet) correlated significantly with the change in fasting TAG levels (P=0.03, R=-0.87 and R2=0.75) and with the total area under the TAG-time response curve (P=0.003, R=-0.96 and R2=0.92) in individuals. Conclusions: These findings, although based on a small number of subjects, suggest that LPL expression may be a determinant of plasma TAG levels. The development of this methodology should allow further elucidation of the effects of dietary manipulation and disease processes on lipid clearance and regulation in human subjects.