59 resultados para NEARBY GALAXIES
Resumo:
Gadget-2 is a massively parallel structure formation code for cosmological simulations. In this paper, we present a Java version of Gadget-2. We evaluated the performance of the Java version by running colliding galaxies simulation and found that it can achieve around 70% of C Gadget-2's performance.
Resumo:
The cooled infrared filters and dichroic beam splitters manufactured for the Mid-Infrared Instrument are key optical components for the selection and isolation of wavelengths in the study of astrophysical properties of stars, galaxies, and other planetary objects. We describe the spectral design and manufacture of the precision cooled filter coatings for the spectrometer (7 K) and imager (9 K). Details of the design methods used to achieve the spectral requirements, selection of thin film materials, deposition technique, and testing are presented together with the optical layout of the instrument. (C) 2008 Optical Society of America.
Resumo:
The Kodar Mountains in eastern Siberia accommodate 30 small, cold-based glaciers with a combined surface area of about 19 km2. Very little is known about these glaciers, with the first survey conducted in the late 1950s. In this paper, we use terrestrial photogrammetry to calculate changes in surface area, elevation, volume and geodetic mass balance of the Azarova Glacier between 1979 and 2007 and relate these to meteorological data from nearby Chara weather station (1938-2007). The glacier surface area declined by 20±6.9% and surface lowered on average by 20±1.8 m (mean thinning: 0.71 m a-1) resulting in a strongly negative cumulative and average mass balance of -18±1.6 m w.e. and -640±60 mm w.e.a-1 respectively. The July-August air temperature increased at a rate of 0.036oC a-1 between 1979 and 2007 and the 1980-2007 period was, on average, around 1oC warmer than 1938-1979. The regional climate projections for A2 and B2 CO2 emission scenarios developed using PRECIS regional climate model indicate that summer temperatures will increase in 2071–2100 by 2.6-4.7°C and 4.9-6.2°C respectively in comparison with 1961–1990. The annual total of solid precipitation will increase by 20% under B2 scenario but decline by 3% under A2 scenario. The length of the ablation season will extend from July–August to June-September. The Azarova Glacier exhibits high sensitivity to climatic warming due to its low elevation, exposure to comparatively high summer temperatures, and the absence of a compensating impact of cold season precipitation. Further summer warming and decline of solid precipitation projected under the A2 scenario will force Azarova to retreat further while impacts of an increase in solid precipitation projected under the B2 scenario require further investigation.
Resumo:
A speech message played several metres from the listener in a room is usually heard to have much the same phonetic content as it does when played nearby, even though the different amounts of reflected sound make the temporal envelopes of these signals very different. To study this ‘constancy’ effect, listeners heard speech messages and speech-like sounds comprising 8 auditory-filter shaped noise-bands that had temporal envelopes corresponding to those in these filters when the speech message is played. The ‘contexts’ were “next you’ll get _to click on”, into which a “sir” or “stir” test word was inserted. These test words were from an 11-step continuum, formed by amplitude modulation. Listeners identified the test words appropriately, even in the 8-band conditions where the speech had a ‘robotic’ quality. Constancy was assessed by comparing the influence of room reflections on the test word across conditions where the context had either the same level of room reflections (i.e. from the same, far distance), or where it had a much lower level (i.e. from nearby). Constancy effects were obtained with both the natural- and the 8-band speech. Results are considered in terms of the degree of ‘matching’ between the context’s and test-word’s bands.
Resumo:
An overview is given of a vision system for locating, recognising and tracking multiple vehicles, using an image sequence taken by a single camera mounted on a moving vehicle. The camera motion is estimated by matching features on the ground plane from one image to the next. Vehicle detection and hypothesis generation are performed using template correlation and a 3D wire frame model of the vehicle is fitted to the image. Once detected and identified, vehicles are tracked using dynamic filtering. A separate batch mode filter obtains the 3D trajectories of nearby vehicles over an extended time. Results are shown for a motorway image sequence.
Resumo:
We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds (MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs. Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 1995 – 2007), we show that the time of disappearance of the northern polar coronal hole (1998 – 1999), permeated by an outward-pointing magnetic field, is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic field reversal process. These results will be further constrainable with the rising phase of solar cycle 24.
Resumo:
Palaeoecological analysis of peat deposits from a small bog, combined with pollen analysis of sediments infilling the moat of the nearby Teutonic Order castle at Malbork, have been used to examine the ecological impact of the Crusades on the late-medieval landscape of Northern Poland. Studies of the environmental impact of the Crusades have been almost exclusively informed by written sources; this study is the first of its type to directly investigate the environmental context of Crusading as a force of ecological transformation on the late-medieval Baltic landscape. The pollen evidence from Malbork Castle and its hinterland demonstrate that the 12th/13th–15th centuries coincide with a marked transformation in vegetation and land-use, characterized by clearance of broadleaved woodland and subsequent agricultural intensification, particularly during the 14th/15th centuries. These changes are ascribed to landscape transformations associated with the Teutonic Order’s control of the landscape from the mid-13th century. Human activity identified in the pollen record prior to this is argued to reflect the activities of Pomeranian settlers in the area. This paper also discusses the broader palaeoecological evidence for medieval landscape change across Northern Poland.
Resumo:
In most near-infrared atmospheric windows, absorption of solar radiation is dominated by the water vapor self-continuum and yet there is a paucity of measurements in these windows. We report new laboratory measurements of the self-continuum absorption at temperatures between 293 and 472 K and pressures from 0.015 to 5 atm in four near-infrared windows between 1 and 4 m (10000-2500 cm-1); the measurements are made over a wider range of wavenumber, temperatures and pressures than any previous measurements. They show that the self-continuum in these windows is typically one order of magnitude stronger than given in representations of the continuum widely used in climate and weather prediction models. These results are also not consistent with current theories attributing the self continuum within windows to the far-wings of strong spectral lines in the nearby water vapor absorption bands; we suggest that they are more consistent with water dimers being the major contributor to the continuum. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by 0.75 W/m2 (which is about 1% of the total clear-sky absorption) by using these new measurements as compared to calculations with the MT_CKD-2.5 self-continuum model.
Resumo:
Traditionally, siting and sizing decisions for parks and reserves reflected ecological characteristics but typically failed to consider ecological costs created from displaced resource collection, welfare costs on nearby rural people, and enforcement costs. Using a spatial game-theoretic model that incorporates the interaction of socioeconomic and ecological settings, we show how incorporating more recent mandates that include rural welfare and surrounding landscapes can result in very different optimal sizing decisions. The model informs our discussion of recent forest management in Tanzania, reserve sizing and siting decisions, estimating reserve effectiveness, and determining patterns of avoided forest degradation in Reduced Emissions from Deforestation and Forest Degradation programs.
Resumo:
For thousands of years, humans have inhabited locations that are highly vulnerable to the impacts of climate change, earthquakes, and floods. In order to investigate the extent to which Holocene environmental changes may have impacted on cultural evolution, we present new geologic, geomorphic, and chronologic data from the Qazvin Plain in northwest Iran that provides a backdrop of natural environmental changes for the simultaneous cultural dynamics observed on the Central Iranian Plateau. Well-resolved archaeological data from the neighbouring settlements of Zagheh (7170—6300 yr BP), Ghabristan (6215—4950 yr BP) and Sagzabad (4050—2350 yr BP) indicate that Holocene occupation of the Hajiarab alluvial fan was interrupted by a 900 year settlement hiatus. Multiproxy climate data from nearby lakes in northwest Iran suggest a transition from arid early-Holocene conditions to more humid middle-Holocene conditions from c. 7550 to 6750 yr BP, coinciding with the settlement of Zagheh, and a peak in aridity at c. 4550 yr BP during the settlement hiatus. Palaeoseismic investigations indicate that large active fault systems in close proximity to the tell sites incurred a series of large (MW ~7.1) earthquakes with return periods of ~500—1000 years during human occupation of the tells. Mapping and optically stimulated luminescence (OSL) chronology of the alluvial sequences reveals changes in depositional style from coarse-grained unconfined sheet flow deposits to proximal channel flow and distally prograding alluvial deposits sometime after c. 8830 yr BP, possibly reflecting an increase in moisture following the early-Holocene arid phase. The coincidence of major climate changes, earthquake activity, and varying sedimentation styles with changing patterns of human occupation on the Hajiarab fan indicate links between environmental and anthropogenic systems. However, temporal coincidence does not necessitate a fundamental causative dependency.
Resumo:
Flood extents caused by fluvial floods in urban and rural areas may be predicted by hydraulic models. Assimilation may be used to correct the model state and improve the estimates of the model parameters or external forcing. One common observation assimilated is the water level at various points along the modelled reach. Distributed water levels may be estimated indirectly along the flood extents in Synthetic Aperture Radar (SAR) images by intersecting the extents with the floodplain topography. It is necessary to select a subset of levels for assimilation because adjacent levels along the flood extent will be strongly correlated. A method for selecting such a subset automatically and in near real-time is described, which would allow the SAR water levels to be used in a forecasting model. The method first selects candidate waterline points in flooded rural areas having low slope. The waterline levels and positions are corrected for the effects of double reflections between the water surface and emergent vegetation at the flood edge. Waterline points are also selected in flooded urban areas away from radar shadow and layover caused by buildings, with levels similar to those in adjacent rural areas. The resulting points are thinned to reduce spatial autocorrelation using a top-down clustering approach. The method was developed using a TerraSAR-X image from a particular case study involving urban and rural flooding. The waterline points extracted proved to be spatially uncorrelated, with levels reasonably similar to those determined manually from aerial photographs, and in good agreement with those of nearby gauges.
Resumo:
The results of an integrated geoarchaeological and palaeoecological pilot study of a prehistoric agricultural terrace and nearby mire basin are presented. They reveal two stages of terrace construction for the cultivation of Zea mays during the Middle Horizon (615–695 AD) and late, Late Intermediate Period (1200–1400 AD). These stages were strongly associated with evidence for vegetation succession, destabilisation and erosion of the surrounding landscape, and changes in mire surface wetness. The reasons for agricultural terrace abandonment and/or reconstruction are uncertain, with only circumstantial evidence for climatically induced agricultural change.
Resumo:
Archaeological excavations alongside the river Wandle in Wallington produced evidence of the environmental history and human exploitation of the area. The recovery of a large assemblage of struck flint provided information on the nature of the prehistoric activities represented, while a detailed environmental archaeological programme permitted an examination of both the local sediment successions and thus an opportunity to reconstruct the environmental history of the site. The site revealed a complex sedimentary sequence deposited in riverine conditions, commencing during the early Holocene (from c 10,000 years before present) and continuing through the late Holocene (c last 3000 years). Large flint nodules were washed by the river onto the site where they were procured and worked by Mesolithic and Bronze Age communities. Potentially usable nodules had been tested, and suitable pieces completely reduced, while the majority of useful flakes and blades had been removed for use elsewhere. Small numbers of retouched pieces, such as scrapers and piercers, indicate that domestic activities took place nearby. By the Saxon period the site had begun to stabilise, although it remained marshy and probably peripheral to habitation. Two pits from this period were excavated, one of which contained an antler pick. A small quantity of cereal grain also suggests that cultivated land lay in the vicinity of the site. During the 19th century a mill race was dug across the site, redirecting water from the river Wandle, which resulted in episodic flooding.
Resumo:
Dissolved organic carbon (DOC) concentrations in surface waters have increased across much of Europe and North America, with implications for the terrestrial carbon balance, aquatic ecosystem functioning, water treatment costs and human health. Over the past decade, many hypotheses have been put forward to explain this phenomenon, from changing climate and land-management to eutrophication and acid deposition. Resolution of this debate has been hindered by a reliance on correlative analyses of time-series data, and a lack of robust experimental testing of proposed mechanisms. In a four-year, four-site replicated field experiment involving both acidifying and de-acidifying treatments, we tested the hypothesis that DOC leaching was previously suppressed by high levels of soil acidity in peat and organo-mineral soils, and therefore that observed DOC increases a consequence of decreasing soil acidity. We observed a consistent, positive relationship between DOC and acidity change at all sites. Responses were described by similar hyperbolic relationships between standardised changes in DOC and hydrogen ion concentrations at all sites, suggesting potentially general applicability. These relationships explained a substantial proportion of observed changes in peak DOC concentrations in nearby monitoring streams, and application to a UK-wide upland soil pH dataset suggests that recovery from acidification alone could have led to soil solution DOC increases in the range 46-126% by habitat type since 1978. Our findings raise the possibility that changing soil acidity may have wider impacts on ecosystem carbon balances. Decreasing sulphur deposition may be accelerating terrestrial carbon loss, and returning surface waters to a natural, high-DOC condition.
Resumo:
Many modern cities locate in the mountainous areas, like Hong Kong, Phoenix City and Los Angles. It is confirmed in the literature that the mountain wind system developed by differential heating or cooling can be very beneficial in ventilating the city nearby and alleviating the UHI effect. However, the direct interaction of mountain wind with the natural-convection circulation due to heated urban surfaces has not been studied, to our best knowledge. This kind of unique interaction of two kinds of airflow structures under calm and neutral atmospheric environment is investigated in this paper by CFD approach. A physical model comprising a simple mountain and three long building blocks (forming two street canyons) is firstly developed. Different airflow structures are identified within the conditions of different mountain-building height ratios (R=Hm/Hb) by varying building height but fixing mountain height. It is found that the higher ventilation rate in the street canyons is expected in the cases of smaller mountain-building ratios, indicating the stronger natural convection due to increasing heated building surfaces. However, there is the highest air change rate (ACH) in the lowest-building-height case and most of the air is advective into the street canyon through the top open area, highlighting the important role played by the mountain wind. In terms of the ventilation efficiency, it is shown that the smallest R case enjoys the best air change efficiency followed by the highest R case, while the worst ventilative street canyons occur at the middle R case. In the end, a gap across the streets is introduced in the modeling. The existence of the gap can greatly channel the mountain wind and distribute the air into streets nearby. Thus the ACH can be doubled and air quality can be significantly improved.