48 resultados para NEAR-INFRARED OBSERVATIONS
Resumo:
Recent laboratory measurements show that absorption by the water vapour continuum in near-infrared windows may be about an order of magnitude higher than assumed in many radiation codes. The radiative impact of the continuum at visible and near-infrared wavelengths is examined for the present day and for a possible future warmer climate (with a global-mean total column water increase of 33%). The calculations use a continuum model frequently used in climate models (‘CKD’) and a continuum model where absorption is enhanced at wavelengths greater than 1 µm based on recent measurements (‘CAVIAR’). The continuum predominantly changes the partitioning between solar radiation absorbed by the surface and the atmosphere; changes in top-of-atmosphere net irradiances are smaller. The global-mean clear-sky atmospheric absorption is enhanced by 1.5 W m−2 (about 2%) and 2.8 W m−2 (about 3.5%) for CKD and CAVIAR respectively, relative to a hypothetical no-continuum case, with all-sky enhancements about 80% of these values. The continuum is, in relative terms, more important for radiation budget changes between the present day and a possible future climate. Relative to the no-continuum case, the increase in global-mean clear-sky absorption is 8% higher using CKD and almost 20% higher using CAVIAR; all-sky enhancements are about half these values. The effect of the continuum is estimated for the solar component of the water vapour feedback, the reduction in downward surface irradiance and precipitation change in a warmer world. For CKD and CAVIAR respectively, and relative to the no-continuum case, the solar component of the water vapour feedback is enhanced by about 4 and 9%, the change in clear-sky downward surface irradiance is 7 and 18% more negative, and the global-mean precipitation response decreases by 1 and 4%. There is a continued need for improved continuum measurements, especially at atmospheric temperatures and at wavelengths below 2 µm.
Resumo:
Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.
Resumo:
Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth’s atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm−1) and include reference to the window centred on 2600 cm−1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback – cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum – as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.
Resumo:
This paper reviews the current state of development of both near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for process monitoring, quality control, and authenticity determination in cheese processing. Infrared spectroscopy has been identified as an ideal process analytical technology tool, and recent publications have demonstrated the potential of both NIR and MIR spectroscopy, coupled with chemometric techniques, for monitoring coagulation, syneresis, and ripening as well as determination of authenticity, composition, sensory, and rheological parameters. Recent research is reviewed and compared on the basis of experimental design, spectroscopic and chemometric methods employed to assess the potential of infrared spectroscopy as a technology for improving process control and quality in cheese manufacture. Emerging research areas for these technologies, such as cheese authenticity and food chain traceability, are also discussed.
Resumo:
The water vapour continuum absorption is an important component of molecular absorption of radiation in atmosphere. However, uncertainty in knowledge of the value of the continuum absorption at present can achieve 100% in different spectral regions leading to an error in flux calculation up to 3-5 W/m2 global mean. This work uses line-by-line calculations to reveal the best spectral intervals for experimental verification of the CKD water vapour continuum models in the currently least studied near-infrared spectral region. Possible sources of errors in continuum retrieval taken into account in the simulation include the sensitivity of laboratory spectrometers and uncertainties in the spectral line parameters in HITRAN-2004 and Schwenke-Partridge database. It is shown that a number of micro-windows in near-IR can be used at present for laboratory detection of the water vapour continuum with estimated accuracy from 30 to 5%.
Resumo:
Rubber composites containing multiwalled carbon nanotubes have been irradiated with near-infrared light to study their reversible photomechanical actuation response. We demonstrate that the actuation is reproducible across differing polymer systems. The response is directly related to the degree of uniaxial alignment of the nanotubes in the matrix, contracting the samples along the alignment axis. The actuation stroke depends on the specific polymer being tested; however, the general response is universal for all composites tested. We conduct a detailed study of tube alignment induced by stress and propose a model for the reversible actuation behavior based on the orientational averaging of the local response. The single phenomenological parameter of this model describes the response of an individual tube to adsorption of low-energy photons; its experimentally determined value may suggest some ideas about such a response.
Resumo:
Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is predominantly in the forward direction. A complete understanding of radiation transport modeling and data analysis methods under wide-angle multiple scattering conditions is mandatory for a correct interpretation of echoes observed by space-borne millimeter radars. This paper reviews the status of research in this field. Different numerical techniques currently implemented to account for higher order scattering are reviewed and their weaknesses and strengths highlighted. Examples of simulated radar backscattering profiles are provided with particular emphasis given to situations in which the multiple scattering contributions become comparable or overwhelm the single scattering signal. We show evidences of multiple scattering effects from air-borne and from CloudSat observations, i.e. unique signatures which cannot be explained by single scattering theory. Ideas how to identify and tackle the multiple scattering effects are discussed. Finally perspectives and suggestions for future work are outlined. This work represents a reference-guide for studies focused at modeling the radiation transport and at interpreting data from high frequency space-borne radar systems that probe highly opaque scattering media such as thick ice clouds or precipitating clouds.
Resumo:
Recent laboratory observations and advances in theoretical quantum chemistry allow a reappraisal of the fundamental mechanisms that determine the water vapour self-continuum absorption throughout the infrared and millimetre wave spectral regions. By starting from a framework that partitions bimolecular interactions between water molecules into free-pair states, true bound and quasi-bound dimers, we present a critical review of recent observations, continuum models and theoretical predictions. In the near-infrared bands of the water monomer, we propose that spectral features in recent laboratory-derived self-continuum can be well explained as being due to a combination of true bound and quasi-bound dimers, when the spectrum of quasi-bound dimers is approximated as being double the broadened spectrum of the water monomer. Such a representation can explain both the wavenumber variation and the temperature dependence. Recent observations of the self-continuum absorption in the windows between these near-infrared bands indicate that widely used continuum models can underestimate the true strength by around an order of magnitude. An existing far-wing model does not appear able to explain the discrepancy, and although a dimer explanation is possible, currently available observations do not allow a compelling case to be made. In the 8–12 micron window, recent observations indicate that the modern continuum models either do not properly represent the temperature dependence, the wavelength variation, or both. The temperature dependence is suggestive of a transition from the dominance of true bound dimers at lower temperatures to quasibound dimers at higher temperatures. In the mid- and far-infrared spectral region, recent theoretical calculations indicate that true bound dimers may explain at least between 20% and 40% of the observed self-continuum. The possibility that quasi-bound dimers could cause an additional contribution of the same size is discussed. Most recent theoretical considerations agree that water dimers are likely to be the dominant contributor to the self-continuum in the mm-wave spectral range.
Resumo:
The objective of this study was to investigate the potential application of mid-infrared spectroscopy for determination of selected sensory attributes in a range of experimentally manufactured processed cheese samples. This study also evaluates mid-infrared spectroscopy against other recently proposed techniques for predicting sensory texture attributes. Processed cheeses (n = 32) of varying compositions were manufactured on a pilot scale. After 2 and 4 wk of storage at 4 degrees C, mid-infrared spectra ( 640 to 4,000 cm(-1)) were recorded and samples were scored on a scale of 0 to 100 for 9 attributes using descriptive sensory analysis. Models were developed by partial least squares regression using raw and pretreated spectra. The mouth-coating and mass-forming models were improved by using a reduced spectral range ( 930 to 1,767 cm(-1)). The remaining attributes were most successfully modeled using a combined range ( 930 to 1,767 cm(-1) and 2,839 to 4,000 cm(-1)). The root mean square errors of cross-validation for the models were 7.4(firmness; range 65.3), 4.6 ( rubbery; range 41.7), 7.1 ( creamy; range 60.9), 5.1(chewy; range 43.3), 5.2(mouth-coating; range 37.4), 5.3 (fragmentable; range 51.0), 7.4 ( melting; range 69.3), and 3.1 (mass-forming; range 23.6). These models had a good practical utility. Model accuracy ranged from approximate quantitative predictions to excellent predictions ( range error ratio = 9.6). In general, the models compared favorably with previously reported instrumental texture models and near-infrared models, although the creamy, chewy, and melting models were slightly weaker than the previously reported near-infrared models. We concluded that mid-infrared spectroscopy could be successfully used for the nondestructive and objective assessment of processed cheese sensory quality..
Resumo:
[1] Remotely sensed, multiannual data sets of shortwave radiative surface fluxes are now available for assimilation into land surface schemes (LSSs) of climate and/or numerical weather prediction models. The RAMI4PILPS suite of virtual experiments assesses the accuracy and consistency of the radiative transfer formulations that provide the magnitudes of absorbed, reflected, and transmitted shortwave radiative fluxes in LSSs. RAMI4PILPS evaluates models under perfectly controlled experimental conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical for model comparison with in situ observations. More specifically, the shortwave radiation is separated into a visible and near-infrared spectral region, and the quality of the simulated radiative fluxes is evaluated by direct comparison with a 3-D Monte Carlo reference model identified during the third phase of the Radiation transfer Model Intercomparison (RAMI) exercise. The RAMI4PILPS setup thus allows to focus in particular on the numerical accuracy of shortwave radiative transfer formulations and to pinpoint to areas where future model improvements should concentrate. The impact of increasing degrees of structural and spectral subgrid variability on the simulated fluxes is documented and the relevance of any thus emerging biases with respect to gross primary production estimates and shortwave radiative forcings due to snow and fire events are investigated.
Resumo:
The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Net- work (AERONET) routinely monitor clouds using zenith ra- diances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m−2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m−2 at the ARM Oklahoma site during 2007– 2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22 % are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11 % with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.
Resumo:
Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud masks. Here, the technique is shown to be suitable for daytime applications over land and sea, using visible and near-infrared imagery, in addition to thermal infrared. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 89% and 73% for ocean and land, respectively using the Bayesian technique, compared to 90% and 70%, respectively for the threshold-based techniques associated with the validation dataset.
Resumo:
The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (BTs). Typically, an estimate of SST is formed from a weighted combination of BTs at a few wavelengths, plus an offset. This paper addresses two questions about the radiative transfer modeling approach to deriving these weighting and offset coefficients. How precisely specified do the coefficients need to be in order to obtain the required SST accuracy (e.g., scatter <0.3 K in week-average SST, bias <0.1 K)? And how precisely is it actually possible to specify them using current forward models? The conclusions are that weighting coefficients can be obtained with adequate precision, while the offset coefficient will often require an empirical adjustment of the order of a few tenths of a kelvin against validation data. Thus, a rational approach to defining retrieval coefficients is one of radiative transfer modeling followed by offset adjustment. The need for this approach is illustrated from experience in defining SST retrieval schemes for operational meteorological satellites. A strategy is described for obtaining the required offset adjustment, and the paper highlights some of the subtler aspects involved with reference to the example of SST retrievals from the imager on the geostationary satellite GOES-8.
Resumo:
We present a Bayesian image classification scheme for discriminating cloud, clear and sea-ice observations at high latitudes to improve identification of areas of clear-sky over ice-free ocean for SST retrieval. We validate the image classification against a manually classified dataset using Advanced Along Track Scanning Radiometer (AATSR) data. A three way classification scheme using a near-infrared textural feature improves classifier accuracy by 9.9 % over the nadir only version of the cloud clearing used in the ATSR Reprocessing for Climate (ARC) project in high latitude regions. The three way classification gives similar numbers of cloud and ice scenes misclassified as clear but significantly more clear-sky cases are correctly identified (89.9 % compared with 65 % for ARC). We also demonstrate the poetential of a Bayesian image classifier including information from the 0.6 micron channel to be used in sea-ice extent and ice surface temperature retrieval with 77.7 % of ice scenes correctly identified and an overall classifier accuracy of 96 %.