33 resultados para Multimodal Biometrics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayesian decision procedures have recently been developed for dose escalation in phase I clinical trials concerning pharmacokinetic responses observed in healthy volunteers. This article describes how that general methodology was extended and evaluated for implementation in a specific phase I trial of a novel compound. At the time of writing, the study is ongoing, and it will be some time before the sponsor will wish to put the results into the public domain. This article is an account of how the study was designed in a way that should prove to be safe, accurate, and efficient whatever the true nature of the compound. The study involves the observation of two pharmacokinetic endpoints relating to the plasma concentration of the compound itself and of a metabolite as well as a safety endpoint relating to the occurrence of adverse events. Construction of the design and its evaluation via simulation are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is about modeling count data with zero truncation. A parametric count density family is considered. The truncated mixture of densities from this family is different from the mixture of truncated densities from the same family. Whereas the former model is more natural to formulate and to interpret, the latter model is theoretically easier to treat. It is shown that for any mixing distribution leading to a truncated mixture, a (usually different) mixing distribution can be found so. that the associated mixture of truncated densities equals the truncated mixture, and vice versa. This implies that the likelihood surfaces for both situations agree, and in this sense both models are equivalent. Zero-truncated count data models are used frequently in the capture-recapture setting to estimate population size, and it can be shown that the two Horvitz-Thompson estimators, associated with the two models, agree. In particular, it is possible to achieve strong results for mixtures of truncated Poisson densities, including reliable, global construction of the unique NPMLE (nonparametric maximum likelihood estimator) of the mixing distribution, implying a unique estimator for the population size. The benefit of these results lies in the fact that it is valid to work with the mixture of truncated count densities, which is less appealing for the practitioner but theoretically easier. Mixtures of truncated count densities form a convex linear model, for which a developed theory exists, including global maximum likelihood theory as well as algorithmic approaches. Once the problem has been solved in this class, it might readily be transformed back to the original problem by means of an explicitly given mapping. Applications of these ideas are given, particularly in the case of the truncated Poisson family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For people with motion impairments, access to and independent control of a computer can be essential. Symptoms such as tremor and spasm, however, can make the typical keyboard and mouse arrangement for computer interaction difficult or even impossible to use. This paper describes three approaches to improving computer input effectivness for people with motion impairments. The three approaches are: (1) to increase the number of interaction channels, (2) to enhance commonly existing interaction channels, and (3) to make more effective use of all the available information in an existing input channel. Experiments in multimodal input, haptic feedback, user modelling, and cursor control are discussed in the context of the three approaches. A haptically enhanced keyboard emulator with perceptive capability is proposed, combining approaches in a way that improves computer access for motion impaired users.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially. We demonstrate here that a mean field model of brain activity can simultaneously predict EEG and fMRI BOLD with proper signal generation and expression. Simulations are shown using a realistic head model based on structural MRI, which includes both dense short-range background connectivity and long-range specific connectivity between brain regions. The distribution of modeled neural masses is comparable to the spatial resolution of fMRI BOLD, and the temporal resolution of the modeled dynamics, importantly including activity conduction, matches the fastest known EEG phenomena. The creation of a cortical mean field model with anatomically sound geometry, extensive connectivity, and proper signal expression is an important first step towards the model-based integration of multimodal neuroimages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration can prove problematic owing to the disparate signal sources. As an alternative, we propose here an advanced neural population model implemented on an anatomically sound cortical mesh with freely adjustable connectivity, which features proper signal expression through a realistic head model for the electroencephalogram (EEG), as well as a haemodynamic model for functional magnetic resonance imaging based on blood oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic predictions of EEG and fMRI BOLD from the same underlying model of neural activity. As proof of principle, we investigate here the influence on simulated brain activity of strengthening visual connectivity. In the future we plan to fit multimodal data with this neural population model. This promises novel, model-based insights into the brain's activity in sleep, rest and task conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We generalize the popular ensemble Kalman filter to an ensemble transform filter, in which the prior distribution can take the form of a Gaussian mixture or a Gaussian kernel density estimator. The design of the filter is based on a continuous formulation of the Bayesian filter analysis step. We call the new filter algorithm the ensemble Gaussian-mixture filter (EGMF). The EGMF is implemented for three simple test problems (Brownian dynamics in one dimension, Langevin dynamics in two dimensions and the three-dimensional Lorenz-63 model). It is demonstrated that the EGMF is capable of tracking systems with non-Gaussian uni- and multimodal ensemble distributions. Copyright © 2011 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Umami taste is produced by glutamate acting on a fifth taste system. However, glutamate presented alone as a taste stimulus is not highly pleasant, and does not act synergistically with other tastes (sweet, salt, bitter and sour). We show here that when glutamate is given in combination with a consonant, savory, odour (vegetable), the resulting flavor can be much more pleasant. Moreover, we showed using functional brain imaging with fMRI that the glutamate taste and savory odour combination produced much greater activation of the medial orbitofrontal cortex and pregenual cingulate cortex than the sum of the activations by the taste and olfactory components presented separately. Supralinear effects were much less (and significantly less) evident for sodium chloride and vegetable odour. Further, activations in these brain regions were correlated with the pleasantness and fullness of the flavor, and with the consonance of the taste and olfactory components. Supralinear effects of glutamate taste and savory odour were not found in the insular primary taste cortex. We thus propose that glutamate acts by the nonlinear effects it can produce when combined with a consonant odour in multimodal cortical taste-olfactory convergence regions. We propose the concept that umami can be thought of as a rich and delicious flavor that is produced by a combination of glutamate taste and a consonant savory odour. Glutamate is thus a flavor enhancer because of the way that it can combine supralinearly with consonant odours in cortical areas where the taste and olfactory pathways converge far beyond the receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synesthesia entails a special kind of sensory perception, where stimulation in one sensory modality leads to an internally generated perceptual experience of another, not stimulated sensory modality. This phenomenon can be viewed as an abnormal multisensory integration process as here the synesthetic percept is aberrantly fused with the stimulated modality. Indeed, recent synesthesia research has focused on multimodal processing even outside of the specific synesthesia-inducing context and has revealed changed multimodal integration, thus suggesting perceptual alterations at a global level. Here, we focused on audio-visual processing in synesthesia using a semantic classification task in combination with visually or auditory-visually presented animated and in animated objects in an audio-visual congruent and incongruent manner. Fourteen subjects with auditory-visual and/or grapheme-color synesthesia and 14 control subjects participated in the experiment. During presentation of the stimuli, event-related potentials were recorded from 32 electrodes. The analysis of reaction times and error rates revealed no group differences with best performance for audio-visually congruent stimulation indicating the well-known multimodal facilitation effect. We found enhanced amplitude of the N1 component over occipital electrode sites for synesthetes compared to controls. The differences occurred irrespective of the experimental condition and therefore suggest a global influence on early sensory processing in synesthetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wernicke’s aphasia occurs following a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke’s aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used fMRI to investigate the neural basis of written word and picture semantic processing in Wernicke’s aphasia, with the wider aim of examining how the semantic system is altered following damage to the classical comprehension regions. Twelve participants with Wernicke’s aphasia and twelve control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and ROI analysis in Wernicke’s aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke’s aphasia group displayed an “over-activation” in comparison to control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke’s aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results concord with models which indicate that the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Atypical self-processing is an emerging theme in autism research, suggested by lower self-reference effect in memory, and atypical neural responses to visual self-representations. Most research on physical self-processing in autism uses visual stimuli. However, the self is a multimodal construct, and therefore, it is essential to test self-recognition in other sensory modalities as well. Self-recognition in the auditory modality remains relatively unexplored and has not been tested in relation to autism and related traits. This study investigates self-recognition in auditory and visual domain in the general population and tests if it is associated with autistic traits. Methods Thirty-nine neurotypical adults participated in a two-part study. In the first session, individual participant’s voice was recorded and face was photographed and morphed respectively with voices and faces from unfamiliar identities. In the second session, participants performed a ‘self-identification’ task, classifying each morph as ‘self’ voice (or face) or an ‘other’ voice (or face). All participants also completed the Autism Spectrum Quotient (AQ). For each sensory modality, slope of the self-recognition curve was used as individual self-recognition metric. These two self-recognition metrics were tested for association between each other, and with autistic traits. Results Fifty percent ‘self’ response was reached for a higher percentage of self in the auditory domain compared to the visual domain (t = 3.142; P < 0.01). No significant correlation was noted between self-recognition bias across sensory modalities (τ = −0.165, P = 0.204). Higher recognition bias for self-voice was observed in individuals higher in autistic traits (τ AQ = 0.301, P = 0.008). No such correlation was observed between recognition bias for self-face and autistic traits (τ AQ = −0.020, P = 0.438). Conclusions Our data shows that recognition bias for physical self-representation is not related across sensory modalities. Further, individuals with higher autistic traits were better able to discriminate self from other voices, but this relation was not observed with self-face. A narrow self-other overlap in the auditory domain seen in individuals with high autistic traits could arise due to enhanced perceptual processing of auditory stimuli often observed in individuals with autism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disadvantage of the majority of data assimilation schemes is the assumption that the conditional probability density function of the state of the system given the observations [posterior probability density function (PDF)] is distributed either locally or globally as a Gaussian. The advantage, however, is that through various different mechanisms they ensure initial conditions that are predominantly in linear balance and therefore spurious gravity wave generation is suppressed. The equivalent-weights particle filter is a data assimilation scheme that allows for a representation of a potentially multimodal posterior PDF. It does this via proposal densities that lead to extra terms being added to the model equations and means the advantage of the traditional data assimilation schemes, in generating predominantly balanced initial conditions, is no longer guaranteed. This paper looks in detail at the impact the equivalent-weights particle filter has on dynamical balance and gravity wave generation in a primitive equation model. The primary conclusions are that (i) provided the model error covariance matrix imposes geostrophic balance, then each additional term required by the equivalent-weights particle filter is also geostrophically balanced; (ii) the relaxation term required to ensure the particles are in the locality of the observations has little effect on gravity waves and actually induces a reduction in gravity wave energy if sufficiently large; and (iii) the equivalent-weights term, which leads to the particles having equivalent significance in the posterior PDF, produces a change in gravity wave energy comparable to the stochastic model error. Thus, the scheme does not produce significant spurious gravity wave energy and so has potential for application in real high-dimensional geophysical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comprehension deficits are common in stroke aphasia, including in cases with (i) semantic aphasia (SA), characterised by poor executive control of semantic processing across verbal and nonverbal modalities, and (ii) Wernicke’s aphasia (WA), associated with poor auditory-verbal comprehension and repetition, plus fluent speech with jargon. However, the varieties of these comprehension problems, and their underlying causes, are not well-understood. Both patient groups exhibit some type of semantic ‘access’ deficit, as opposed to the ‘storage’ deficits observed in semantic dementia. Nevertheless, existing descriptions suggest these patients might have different varieties of ‘access’ impairment – related to difficulty resolving competition (in SA) vs. initial activation of concepts from sensory inputs (in WA). We used a case-series design to compare WA and SA patients on Warrington’s paradigmatic assessment of semantic ‘access’ deficits. In these verbal and non-verbal matching tasks, a small set of semantically-related items are repeatedly presented over several cycles so that the target on one trial becomes a distractor on another (building up interference and eliciting semantic ‘blocking’ effects). WA and SA patients were distinguished according to lesion location in the temporal cortex, but in each group, some individuals had additional prefrontal damage. Both of these aspects of lesion variability – one that mapped onto classical ‘syndromes’ and one that did not – predicted aspects of the semantic ‘access’ deficit. Both SA and WA cases showed multimodal semantic impairment, although as expected the WA group showed greater deficits on auditory-verbal than picture judgements. Distribution of damage in the temporal lobe was crucial for predicting the initially beneficial effects of stimulus repetition: WA cases showed initial improvement with repetition of words and pictures, while in SA, semantic access was initially good but declined in the face of competition from previous targets. Prefrontal damage predicted the harmful effects of repetition: the ability to re-select both word and picture targets in the face of mounting competition was linked to left prefrontal damage in both groups. Therefore, SA and WA patients have partially distinct impairment of semantic ‘access’ but, across these syndromes, prefrontal lesions produce declining comprehension with repetition in both verbal and non-verbal tasks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periocular recognition has recently become an active topic in biometrics. Typically it uses 2D image data of the periocular region. This paper is the first description of combining 3D shape structure with 2D texture. A simple and effective technique using iterative closest point (ICP) was applied for 3D periocular region matching. It proved its strength for relatively unconstrained eye region capture, and does not require any training. Local binary patterns (LBP) were applied for 2D image based periocular matching. The two modalities were combined at the score-level. This approach was evaluated using the Bosphorus 3D face database, which contains large variations in facial expressions, head poses and occlusions. The rank-1 accuracy achieved from the 3D data (80%) was better than that for 2D (58%), and the best accuracy (83%) was achieved by fusing the two types of data. This suggests that significant improvements to periocular recognition systems could be achieved using the 3D structure information that is now available from small and inexpensive sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sclera segmentation is shown to be of significant importance for eye and iris biometrics. However, sclera segmentation has not been extensively researched as a separate topic, but mainly summarized as a component of a broader task. This paper proposes a novel sclera segmentation algorithm for colour images which operates at pixel-level. Exploring various colour spaces, the proposed approach is robust to image noise and different gaze directions. The algorithm’s robustness is enhanced by a two-stage classifier. At the first stage, a set of simple classifiers is employed, while at the second stage, a neural network classifier operates on the probabilities’ space generated by the classifiers at stage 1. The proposed method was ranked the 1st in Sclera Segmentation Benchmarking Competition 2015, part of BTAS 2015, with a precision of 95.05% corresponding to a recall of 94.56%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multispectral iris recognition uses information from multiple bands of the electromagnetic spectrum to better represent certain physiological characteristics of the iris texture and enhance obtained recognition accuracy. This paper addresses the questions of single versus cross spectral performance and compares score-level fusion accuracy for different feature types, combining different wavelengths to overcome limitations in less constrained recording environments. Further it is investigated whether Doddington's “goats” (users who are particularly difficult to recognize) in one spectrum also extend to other spectra. Focusing on the question of feature stability at different wavelengths, this work uses manual ground truth segmentation, avoiding bias by segmentation impact. Experiments on the public UTIRIS multispectral iris dataset using 4 feature extraction techniques reveal a significant enhancement when combining NIR + Red for 2-channel and NIR + Red + Blue for 3-channel fusion, across different feature types. Selective feature-level fusion is investigated and shown to improve overall and especially cross-spectral performance without increasing the overall length of the iris code.