51 resultados para Multicriteria Decision Support System
Resumo:
A dynamic, deterministic, economic simulation model was developed to estimate the costs and benefits of controlling Mycobacterium avium subsp. paratuberculosis (Johne's disease) in a suckler beef herd. The model is intended as a demonstration tool for veterinarians to use with farmers. The model design process involved user consultation and participation and the model is freely accessible on a dedicated website. The 'user-friendly' model interface allows the input of key assumptions and farm specific parameters enabling model simulations to be tailored to individual farm circumstances. The model simulates the effect of Johne's disease and various measures for its control in terms of herd prevalence and the shedding states of animals within the herd, the financial costs of the disease and of any control measures and the likely benefits of control of Johne's disease for the beef suckler herd over a 10-year period. The model thus helps to make more transparent the 'hidden costs' of Johne's in a herd and the likely benefits to be gained from controlling the disease. The control strategies considered within the model are 'no control', 'testing and culling of diagnosed animals', 'improving management measures' or a dual strategy of 'testing and culling in association with improving management measures'. An example 'run' of the model shows that the strategy 'improving management measures', which reduces infection routes during the early stages, results in a marked fall in herd prevalence and total costs. Testing and culling does little to reduce prevalence and does not reduce total costs over the 10-year period.
Resumo:
Johne's disease in cattle is a contagious wasting disease caused by Mycobacterium avium subspecies paratuberculosis (MAP). Johne's infection is characterised by a long subclinical phase and can therefore go undetected for long periods of time during which substantial production losses can occur. The protracted nature of Johne's infection therefore presents a challenge for both veterinarians and farmers when discussing control options due to a paucity of information and limited test performance when screening for the disease. The objectives were to model Johne's control decisions in suckler beef cattle using a decision support approach, thus implying equal focus on ‘end user’ (veterinarian) participation whilst still focusing on the technical disease modelling aspects during the decision support model development. The model shows how Johne's disease is likely to affect a herd over time both in terms of physical and financial impacts. In addition, the model simulates the effect on production from two different Johne's control strategies; herd management measures and test and cull measures. The article also provides and discusses results from a sensitivity analysis to assess the effects on production from improving the currently available test performance. Output from running the model shows that a combination of management improvements to reduce routes of infection and testing and culling to remove infected and infectious animals is likely to be the least-cost control strategy.
Resumo:
Aim: To develop a list of prescribing indicators specific for the hospital setting that would facilitate the prospective collection of high severity and/or high frequency prescribing errors, which are also amenable to electronic clinical decision support (CDS). Method: A three-stage consensus technique (electronic Delphi) was carried out with 20 expert pharmacists and physicians across England. Participants were asked to score prescribing errors using a 5-point Likert scale for their likelihood of occurrence and the severity of the most likely outcome. These were combined to produce risk scores, from which median scores were calculated for each indicator across the participants in the study. The degree of consensus between the participants was defined as the proportion that gave a risk score in the same category as the median. Indicators were included if a consensus of 80% or more was achieved. Results: A total of 80 prescribing errors were identified by consensus as being high or extreme risk. The most common drug classes named within the indicators were antibiotics (n=13), antidepressants (n=8), nonsteroidal anti-inflammatory drugs (n=6), and opioid analgesics (n=6).The most frequent error type identified as high or extreme risk were those classified as clinical contraindications (n=29/80). Conclusion: 80 high risk prescribing errors in the hospital setting have been identified by an expert panel. These indicators can serve as the basis for a standardised, validated tool for the collection of data in both paperbased and electronic prescribing processes, as well as to assess the impact of electronic decision support implementation or development.
Resumo:
An appraisal task involves the rendering of market value, an unobservable and hypothetical construct. Direct feedback against this objective is typically not possible, so alternative feedback such as confirmation of previous appraised values may be employed. This may alter the appraiser’s perception of the valuation objective leading to divergence from the appraisal normative model. The real estate literature suggests appraisers have been susceptible to the influence of previous appraised values, often resulting in biased valuations. This research focuses on the efficacy of a decision support tool in eliminating or subduing this bias in the appraisal process.
Resumo:
Mycoplasma gallisepticum (MG) is a bacterium that causes respiratory disease in chickens, leading to reduced egg production. A dynamic simulation model was developed that can be used to assess the costs and benefits of control using antimicrobials or vaccination in caged or free range systems. The intended users are veterinarians and egg producers. A user interface is provided for input of flock specific parameters. The economic consequence of an MG outbreak is expressed as a reduction in expected egg output. The model predicts that either vaccination or microbial treatment can approximately halve potential losses from MG in some circumstances. Sensitivity analysis is used to test assumptions about infection rate and timing of an outbreak. Feedback from veterinarians points to the value of the model as a discussion tool with producers.
Resumo:
In order to enhance the quality of care, healthcare organisations are increasingly resorting to clinical decision support systems (CDSSs), which provide physicians with appropriate health care decisions or recommendations. However, how to explicitly represent the diverse vague medical knowledge and effectively reason in the decision-making process are still problems we are confronted. In this paper, we incorporate semiotics into fuzzy logic to enhance CDSSs with the aim of providing both the abilities of describing medical domain concepts contextually and reasoning with vague knowledge. A semiotically inspired fuzzy CDSSs framework is presented, based on which the vague knowledge representation and reasoning process are demonstrated.