18 resultados para Multi-user MIMO
Resumo:
Cross-layer techniques represent efficient means to enhance throughput and increase the transmission reliability of wireless communication systems. In this paper, a cross-layer design of aggressive adaptive modulation and coding (A-AMC), truncated automatic repeat request (T-ARQ), and user scheduling is proposed for multiuser multiple-input-multiple-output (MIMO) maximal ratio combining (MRC) systems, where the impacts of feedback delay (FD) and limited feedback (LF) on channel state information (CSI) are also considered. The A-AMC and T-ARQ mechanism selects the appropriate modulation and coding schemes (MCSs) to achieve higher spectral efficiency while satisfying the service requirement on the packet loss rate (PLR), profiting from the feasibility of using different MCSs to retransmit a packet, which is destined to a scheduled user selected to exploit multiuser diversity and enhance the system's performance in terms of both transmission efficiency and fairness. The system's performance is evaluated in terms of the average PLR, average spectral efficiency (ASE), outage probability, and average packet delay, which are derived in closed form, considering transmissions over Rayleigh-fading channels. Numerical results and comparisons are provided and show that A-AMC combined with T-ARQ yields higher spectral efficiency than the conventional scheme based on adaptive modulation and coding (AMC), while keeping the achieved PLR closer to the system's requirement and reducing delay. Furthermore, the effects of the number of ARQ retransmissions, numbers of transmit and receive antennas, normalized FD, and cardinality of the beamforming weight vector codebook are studied and discussed.
Resumo:
Distributed generation plays a key role in reducing CO2 emissions and losses in transmission of power. However, due to the nature of renewable resources, distributed generation requires suitable control strategies to assure reliability and optimality for the grid. Multi-agent systems are perfect candidates for providing distributed control of distributed generation stations as well as providing reliability and flexibility for the grid integration. The proposed multi-agent energy management system consists of single-type agents who control one or more gird entities, which are represented as generic sub-agent elements. The agent applies one control algorithm across all elements and uses a cost function to evaluate the suitability of the element as a supplier. The behavior set by the agent's user defines which parameters of an element have greater weight in the cost function, which allows the user to specify the preference on suppliers dynamically. This study shows the ability of the multi-agent energy management system to select suppliers according to the selection behavior given by the user. The optimality of the supplier for the required demand is ensured by the cost function based on the parameters of the element.
Resumo:
Currently researchers in the field of personalized recommendations bear little consideration on users' interest differences in resource attributes although resource attribute is usually one of the most important factors in determining user preferences. To solve this problem, the paper builds an evaluation model of user interest based on resource multi-attributes, proposes a modified Pearson-Compatibility multi-attribute group decision-making algorithm, and introduces an algorithm to solve the recommendation problem of k-neighbor similar users. Considering the characteristics of collaborative filtering recommendation, the paper addresses the issues on the preference differences of similar users, incomplete values, and advanced converge of the algorithm. Thus the paper realizes multi-attribute collaborative filtering. Finally, the effectiveness of the algorithm is proved by an experiment of collaborative recommendation among multi-users based on virtual environment. The experimental results show that the algorithm has a high accuracy on predicting target users' attribute preferences and has a strong anti-interference ability on deviation and incomplete values.