42 resultados para Multi-camera networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fingerprinting is a well known approach for identifying multimedia data without having the original data present but what amounts to its essence or ”DNA”. Current approaches show insufficient deployment of three types of knowledge that could be brought to bear in providing a finger printing framework that remains effective, efficient and can accommodate both the whole as well as elemental protection at appropriate levels of abstraction to suit various Foci of Interest (FoI) in an image or cross media artefact. Thus our proposed framework aims to deliver selective composite fingerprinting that remains responsive to the requirements for protection of whole or parts of an image which may be of particularly interest and be especially vulnerable to attempts at rights violation. This is powerfully aided by leveraging both multi-modal information as well as a rich spectrum of collateral context knowledge including both image-level collaterals as well as the inevitably needed market intelligence knowledge such as customers’ social networks interests profiling which we can deploy as a crucial component of our Fingerprinting Collateral Knowledge. This is used in selecting the special FoIs within an image or other media content that have to be selectively and collaterally protected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Garment information tracking is required for clean room garment management. In this paper, we present a camera-based robust system with implementation of Optical Character Reconition (OCR) techniques to fulfill garment label recognition. In the system, a camera is used for image capturing; an adaptive thresholding algorithm is employed to generate binary images; Connected Component Labelling (CCL) is then adopted for object detection in the binary image as a part of finding the ROI (Region of Interest); Artificial Neural Networks (ANNs) with the BP (Back Propagation) learning algorithm are used for digit recognition; and finally the system is verified by a system database. The system has been tested. The results show that it is capable of coping with variance of lighting, digit twisting, background complexity, and font orientations. The system performance with association to the digit recognition rate has met the design requirement. It has achieved real-time and error-free garment information tracking during the testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fingerprinting is a well known approach for identifying multimedia data without having the original data present but instead what amounts to its essence or 'DNA'. Current approaches show insufficient deployment of various types of knowledge that could be brought to bear in providing a fingerprinting framework that remains effective, efficient and can accommodate both the whole as well as elemental protection at appropriate levels of abstraction to suit various Zones of Interest (ZoI) in an image or cross media artefact. The proposed framework aims to deliver selective composite fingerprinting that is powerfully aided by leveraging both multi-modal information as well as a rich spectrum of collateral context knowledge including both image-level collaterals and also the inevitably needed market intelligence knowledge such as customers' social networks interests profiling which we can deploy as a crucial component of our fingerprinting collateral knowledge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully CVRBF network. The proposed fully CVRBF network is also applied to four-class classification problems that are typically encountered in communication systems. A complex-valued orthogonal forward selection algorithm based on the multi-class Fisher ratio of class separability measure is derived for constructing sparse CVRBF classifiers that generalise well. The effectiveness of the proposed algorithm is demonstrated using the example of nonlinear beamforming for multiple-antenna aided communication systems that employ complex-valued quadrature phase shift keying modulation scheme. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the use of radial basis function and multi-layer perceptron networks for linear or linearizable, adaptive feedback control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parameterization. A comparison is made with standard, nonneural network algorithms, e.g. self-tuning control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-layered architecture of self-organizing neural networks is being developed as part of an intelligent alarm processor to analyse a stream of power grid fault messages and provide a suggested diagnosis of the fault location. Feedback concerning the accuracy of the diagnosis is provided by an object-oriented grid simulator which acts as an external supervisor to the learning system. The utilization of artificial neural networks within this environment should result in a powerful generic alarm processor which will not require extensive training by a human expert to produce accurate results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the use of multi-layer perceptron networks for linear or linearizable, adaptive feedback.control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parametrization. A comparison is made with standard, non-perceptron algorithms, e.g. self-tuning control, and it is shown how gross over-parametrization can occur in the neural network case. Because of the resultant heavy computational burden and poor controller convergence, a strong case is made against the use of neural networks for discrete-time linear control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An input variable selection procedure is introduced for the identification and construction of multi-input multi-output (MIMO) neurofuzzy operating point dependent models. The algorithm is an extension of a forward modified Gram-Schmidt orthogonal least squares procedure for a linear model structure which is modified to accommodate nonlinear system modeling by incorporating piecewise locally linear model fitting. The proposed input nodes selection procedure effectively tackles the problem of the curse of dimensionality associated with lattice-based modeling algorithms such as radial basis function neurofuzzy networks, enabling the resulting neurofuzzy operating point dependent model to be widely applied in control and estimation. Some numerical examples are given to demonstrate the effectiveness of the proposed construction algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new structure of Radial Basis Function (RBF) neural network called the Dual-orthogonal RBF Network (DRBF) is introduced for nonlinear time series prediction. The hidden nodes of a conventional RBF network compare the Euclidean distance between the network input vector and the centres, and the node responses are radially symmetrical. But in time series prediction where the system input vectors are lagged system outputs, which are usually highly correlated, the Euclidean distance measure may not be appropriate. The DRBF network modifies the distance metric by introducing a classification function which is based on the estimation data set. Training the DRBF networks consists of two stages. Learning the classification related basis functions and the important input nodes, followed by selecting the regressors and learning the weights of the hidden nodes. In both cases, a forward Orthogonal Least Squares (OLS) selection procedure is applied, initially to select the important input nodes and then to select the important centres. Simulation results of single-step and multi-step ahead predictions over a test data set are included to demonstrate the effectiveness of the new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-rate multicarrier DS/CDMA is a potentially attractive multiple access method for future wireless communications networks that must support multimedia, and thus multi-rate, traffic. Several receiver structures exist for single-rate multicarrier systems, but little has been reported on multi-rate multicarrier systems. Considering that high-performance detection such as coherent demodulation needs the explicit knowledge of the channel, based on the finite-length chip waveform truncation, this paper proposes a subspace-based scheme for timing and channel estimation in multi-rate multicarrier DS/CDMA systems, which is applicable to both multicode and variable spreading factor systems. The performance of the proposed scheme for these two multi-rate systems is validated via numerical simulations. The effects of the finite-length chip waveform truncation on the performance of the proposed scheme is also analyzed theoretically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-rate multicarrier DS-CDMA is a potentially attractive multiple access method for future broadband wireless multimedia networks that must support integrated voice/data traffic. This paper proposes a subspace based channel estimation scheme for multi-rate multicarrier DS-CDMA, which is applicable to both multicode and variable spreading factor systems. The performance of the proposed scheme for these two multi-rate systems is compared via numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-rate multicarrier DS-CDMA is a potentially attractive multiple access method for future wireless networks that must support multimedia, and thus multi-rate, traffic. Considering that high performance detection such as coherent demodulation needs the explicit knowledge of the channel, this paper proposes a subspace-based blind adaptive algorithm for timing acquisition and channel estimation in asynchronous multirate multicarrier DS-CDMA systems, which is applicable to both multicode and variable spreading factor systems.