55 resultados para Modern pollen rain
Resumo:
Fossil pollen data supplemented by tree macrofossil records were used to reconstruct the vegetation of the Former Soviet Union and Mongolia at 6000 years. Pollen spectra were assigned to biomes using the plant-functional-type method developed by Prentice et al. (1996). Surface pollen data and a modern vegetation map provided a test of the method. This is the first time such a broad-scale vegetation reconstruction for the greater part of northern Eurasia has been attempted with objective techniques. The new results confirm previous regional palaeoenvironmental studies of the mid-Holocene while providing a comprehensive synopsis and firmer conclusions. West of the Ural Mountains temperate deciduous forest extended both northward and southward from its modern range. The northern limits of cool mixed and cool conifer forests were also further north than present. Taiga was reduced in European Russia, but was extended into Yakutia where now there is cold deciduous forest. The northern limit of taiga was extended (as shown by increased Picea pollen percentages, and by tree macrofossil records north of the present-day forest limit) but tundra was still present in north-eastern Siberia. The boundary between forest and steppe in the continental interior did not shift substantially, and dry conditions similar to present existed in western Mongolia and north of the Aral Sea.
Resumo:
Biomization provides an objective and robust method of assigning pollen spectra to biomes so that pollen data can be mapped and compared directly with the output of biomgeographic models. We have tested the applicability of this procedure, originally developed for Europe, to assign modern surface samples from China to biomes. The procedure successfully delineated the major vegetation types of China. When the same procedure was applied to fossil pollen samples for 6000 years ago, the reconstructions showed systematic differences from present, consistent with previous interpretations of vegetation changes since the mid-Holocene. In eastern China, the forest zones were systematically shifted northwards, such that cool mixed forests displaced taiga in northeastern China, while broad-leaved evergreen forest extended c. 300 km and temperate deciduous forestc. 500–600 km beyond their present northern limits. In northwestern China, the area of desert and steppe vegetation was reduced compared to present. On the Tibetan Plateau, forest vegetation extended to higher elevations than today and the area of tundra was reduced. These shifts in biome distributions imply significant changes in climate since 6000 years ago that can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Asian monsoon.
Resumo:
14C-dated pollen and lake-level data from Europe are used to assess the spatial patterns of climate change between 6000 yr BP and present, as simulated by the NCAR CCM1 (National Center for Atmospheric Research, Community Climate Model, version 1) in response to the change in the Earth’s orbital parameters during this perod. First, reconstructed 6000 yr BP values of bioclimate variables obtained from pollen and lake-level data with the constrained-analogue technique are compared with simulated values. Then a 6000 yr BP biome map obtained from pollen data with an objective biome reconstruction (biomization) technique is compared with BIOME model results derived from the same simulation. Data and simulations agree in some features: warmer-than-present growing seasons in N and C Europe allowed forests to extend further north and to higher elevations than today, and warmer winters in C and E Europe prevented boreal conifers from spreading west. More generally, however, the agreement is poor. Predominantly deciduous forest types in Fennoscandia imply warmer winters than the model allows. The model fails to simulate winters cold enough, or summers wet enough, to allow temperate deciduous forests their former extended distribution in S Europe, and it incorrectly simulates a much expanded area of steppe vegetation in SE Europe. Similar errors have also been noted in numerous 6000 yr BP simulations with prescribed modern sea surface temperatures. These errors are evidently not resolved by the inclusion of interactive sea-surface conditions in the CCM1. Accurate representation of mid-Holocene climates in Europe may require the inclusion of dynamical ocean–atmosphere and/or vegetation–atmosphere interactions that most palaeoclimate model simulations have so far disregarded.
Resumo:
New compilations of African pollen and lake data are compared with climate (CCM1, NCAR, Boulder) and vegetation (BIOME 1.2, GSG, Lund) simulations for the last glacial maximum (LGM) and early to mid-Holocene (EMH). The simulated LGM climate was ca 4°C colder and drier than present, with maximum reduction in precipitation in semi-arid regions. Biome simulations show lowering of montane vegetation belts and expansion of southern xerophytic associations, but no change in the distribution of deserts and tropical rain forests. The lakes show LGM conditions similar or drier than present throughout northern and tropical Africa. Pollen data indicate lowering of montane vegetation belts, the stability of the Sahara, and a reduction of rain forest. The paleoenvironmental data are consistent with the simulated changes in temperature and moisture budgets, although they suggest the climate model underestimates equatorial aridity. EMH simulations show temperatures slightly less than present and increased monsoonal precipitation in the eastern Sahara and East Africa. Biome simulations show an upward shift of montane vegetation belts, fragmentation of xerophytic vegetation in southern Africa, and a major northward shift of the southern margin of the eastern Sahara. The lakes indicate conditions wetter than present across northern Africa. Pollen data show an upward shift of the montane forests, the northward shift of the southern margin of the Sahara, and a major extension of tropical rain forest. The lake and pollen data confirm monsoon expansion in eastern Africa, but the climate model fails to simulate the wet conditions in western Africa.
Resumo:
SMPS and DMS500 analysers were used to measure particulate size distributions in the exhaust of a fully annular aero gas turbine engine at two operating conditions to compare and analyse sources of discrepancy. A number of different dilution ratio values were utilised for the comparative analysis, and a Dekati hot diluter operating at a temperature of 623°K was also utilised to remove volatile PM prior to measurements being made. Additional work focused on observing the effect of varying the sample line temperatures to ascertain the impact. Explanations are offered for most of the trends observed, although a new, repeatable event identified in the range from 417°K to 423°K – where there was a three order of magnitude increase in the nucleation mode of the sample – requires further study.
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
Bulk organic VC and C/N ratios from mid-Holocene salt-marsh deposits with sedimentary banding reveal subtle but significant differences between coarse- and fine-grained deposits. These are consistent with findings from seasonally sampled modern silts, and with the interpretation, on physical and palynological grounds, of the fine-grained and coarse-grained components as warm-season and cold-season deposits, respectively. The control is considered to be seasonal variations in the character of the organic matter supplied.
Resumo:
Paternity analysis based on eight microsatellite loci was used to investigate pollen and seed dispersal patterns of the dioecious wind- pollinated tree, Araucaria angustifolia. The study sites were a 5.4 ha isolated forest fragment and a small tree group situated 1.7 km away, located in Paran alpha State, Brazil. In the forest fragment, 121 males, 99 females, 66 seedlings and 92 juveniles were mapped and genotyped, together with 210 seeds. In the tree group, nine male and two female adults were mapped and genotyped, together with 20 seeds. Paternity analysis within the forest fragment indicated that at least 4% of the seeds, 3% of the seedlings and 7% of the juveniles were fertilized by pollen from trees in the adjacent group, and 6% of the seeds were fertilized by pollen from trees outside these stands. The average pollination distance within the forest fragment was 83 m; when the tree group was included the pollination distance was 2006m. The average number of effective pollen donors was estimated as 12.6. Mother- trees within the fragment could be assigned to all seedlings and juveniles, suggesting an absence of seed immigration. The distance of seedlings and juveniles from their assigned mother- trees ranged from 0.35 to 291m ( with an average of 83m). Significant spatial genetic structure among adult trees, seedlings, and juveniles was detected up to 50m, indicating seed dispersal over a short distance. The effective pollination neighborhood ranged from 0.4 to 3.3 ha. The results suggest that seed dispersal is restricted but that there is longdistance pollen dispersal between the forest fragment and the tree group; thus, the two stands of trees are not isolated.
Resumo:
The active accretional features that have developed along the modern Nile Delta promontories during shoreline retreat are analysed using topographic maps, remote imagery, ground and hydrographic surveys, together providing 15 time-slice maps (1922-2000) at Rosetta and 14 time-slice maps (1909-2000) at Damietta. Small double sandy spits developed and persisted at Rosetta between 1986 and 1991. At Damietta, a much larger single spit, 9 km long, formed approximately east of the mouth of the Damietta Nile branch between 1955 and 1972, although its source has now been depleted. Both the Rosetta and Damietta inlets are associated with submerged mouth bars that accumulated prior to the damming of the Nile, but that continue to contribute to local sedimentation problems, particularly at Rosetta. The development of the active accretional features along the Nile promontories reflects a combination of factors including sediment availability, transport pathways from source areas, a decrease in the magnitude of Nile flood discharges, as well as the impact of protective structures at the river mouths.
Resumo:
A high-resolution record of sea-level change spanning the past 1000 years is derived from foraminiferal and chronological analyses of a 2m thick salt-marsh peat sequence at Chezzetcook, Nova Scotia, Canada. Former mean tide level positions are reconstructed with a precision of +/- 0.055 in using a transfer function derived from distributions of modern salt-marsh foraminifera. Our age model for the core section older than 300 years is based on 19 AMS C-14 ages and takes into account the individual probability distributions of calibrated radiocarbon ages. The past 300 years is dated by pollen and the isotopes Pb-206, Pb-207, Pb-210, Cs-137 and Am-241. Between AD 1000 and AD 1800, relative sea level rose at a mean rate of 17cm per century. Apparent pre-industrial rises of sea level dated at AD 1500-1550 and AD 1700-1800 cannot be clearly distinguished when radiocarbon age errors are taken into account. Furthermore, they may be an artefact of fluctuations in atmospheric C-14 production. In the 19th century sea level rose at a mean rate of 1.6mm/yr. Between AD 1900 and AD 1920, sea-level rise accelerated to the modern mean rate of 3.2mm/yr. This acceleration corresponds in time with global temperature rise and may therefore be associated with recent global warming. (c) 2005 Elsevier Ltd. All rights reserved.