81 resultados para Model-driven Architecture, Goal-Oriented design, usability
The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes
Resumo:
This manuscript describes the energy and water components of a new community land surface model called the Joint UK Land Environment Simulator (JULES). This is developed from the Met Office Surface Exchange Scheme (MOSES). It can be used as a stand alone land surface model driven by observed forcing data, or coupled to an atmospheric global circulation model. The JULES model has been coupled to the Met Office Unified Model (UM) and as such provides a unique opportunity for the research community to contribute their research to improve both world-leading operational weather forecasting and climate change prediction systems. In addition JULES, and its forerunner MOSES, have been the basis for a number of very high-profile papers concerning the land-surface and climate over the last decade. JULES has a modular structure aligned to physical processes, providing the basis for a flexible modelling platform.
Resumo:
Previous work has established the value of goal-oriented approaches to requirements engineering. Achieving clarity and agreement about stakeholders’ goals and assumptions is critical for building successful software systems and managing their subsequent evolution. In general, this decision-making process requires stakeholders to understand the implications of decisions outside the domains of their own expertise. Hence it is important to support goal negotiation and decision making with description languages that are both precise and expressive, yet easy to grasp. This paper presents work in progress to develop a pattern language for describing goal refinement graphs. The language has a simple graphical notation, which is supported by a prototype editor tool, and a symbolic notation based on modal logic.
Resumo:
This RTD project, 2007-2009, is partly funded by the European Commission, in Framework Programme 6. It aims to assist elderly people for living well, independently and at case. ENABLE will provide a number of services for elderly people based on the new technology provided by mobile phones. The project is developing a Wrist unit with both integrated and external sensors, and with a radio frequency link to a mobile phone. Dedicated ENABLE software running on the wrist unit and mobile phone makes these services fully accessible for the elderly users. This paper outlines the fundamental motivation and the approach which currently is undertaken in order to collect the more detailed user needs and requirements. The general architecture and the design of the ENABLE system are outlined.
Resumo:
Purpose – While Freeman's stakeholder management approach has attracted much attention from both scholars and practitioners, little empirical work has considered the interconnectedness of organisational perspectives and stakeholder perspectives. The purpose of this paper is to respond to this gap by developing and empirically testing a bi-directional model of organisation/stakeholder relationships. Design/methodology/approach – A conceptual framework is developed that integrates how stakeholders are affected by organisations with how they affect organisations. Quantitative data relating to both sides of the relationship are obtained from 700 customers of a European service organisation and analysed using partial least squares structural equation modelling technique. Findings – The findings provide empirical support for the notion of mutual dependency between organisations and stakeholders as advocated by stakeholder theorists. The results suggest that the way stakeholders relate to organisations is dependent on how organisations relate to stakeholders. Originality/value – The study is original on two fronts: first, it provides a framework and process that can be used by researchers to model bi-directional research with other stakeholder groups and in different contexts. Second, the study presents an example application of bi-directional research by empirically linking organisational and stakeholder expectations in the case of customers of a UK service organisation.
Resumo:
Information modelling is a topic that has been researched a great deal, but still many questions around it have not been solved. An information model is essential in the design of a database which is the core of an information system. Currently most of databases only deal with information that represents facts, or asserted information. The ability of capturing semantic aspect has to be improved, and yet other types, such as temporal and intentional information, should be considered. Semantic Analysis, a method of information modelling, has offered a way to handle various aspects of information. It employs the domain knowledge and communication acts as sources of information modelling. It lends itself to a uniform structure whereby semantic, temporal and intentional information can be captured, which builds a sound foundation for building a semantic temporal database.
Resumo:
Enhanced release of CO2 to the atmosphere from soil organic carbon as a result of increased temperatures may lead to a positive feedback between climate change and the carbon cycle, resulting in much higher CO2 levels and accelerated lobal warming. However, the magnitude of this effect is uncertain and critically dependent on how the decomposition of soil organic C (heterotrophic respiration) responds to changes in climate. Previous studies with the Hadley Centre’s coupled climate–carbon cycle general circulation model (GCM) (HadCM3LC) used a simple, single-pool soil carbon model to simulate the response. Here we present results from numerical simulations that use the more sophisticated ‘RothC’ multipool soil carbon model, driven with the same climate data. The results show strong similarities in the behaviour of the two models, although RothC tends to simulate slightly smaller changes in global soil carbon stocks for the same forcing. RothC simulates global soil carbon stocks decreasing by 54 GtC by 2100 in a climate change simulation compared with an 80 GtC decrease in HadCM3LC. The multipool carbon dynamics of RothC cause it to exhibit a slower magnitude of transient response to both increased organic carbon inputs and changes in climate. We conclude that the projection of a positive feedback between climate and carbon cycle is robust, but the magnitude of the feedback is dependent on the structure of the soil carbon model.
Resumo:
This paper proposes a Dual-Magnet Magnetic Compliance Unit (DMCU) for use in medium sized space rover platforms to enhance terrain handling capabilities and speed of traversal. An explanation of magnetic compliance and how it can be applied to space robotics is shown, along with an initial mathematical model for this system. A design for the DMCU is proposed along with a 4-wheeled DMCU Testing Rig.
Resumo:
Models of functional connectivity in cortical cultures on multi-electrodes arrays may aid in understanding how cognitive pathways form and improve techniques that aim to interface with neuronal systems. To enable research on such models, this study uses both data- and model-driven approaches to determine what dependencies are present in and between functional connectivity networks derived from bursts of extracellularly recorded activity. Properties of excitation in bursts were analysed using correlative techniques to assess the degree of linear dependence and then two parallel techniques were used to assess functional connectivity. Three models presenting increasing levels of spatio-temporal dependency were used to capture the dynamics of individual functional connections and their consistencies were verified using surrogate data. By comparing network-wide properties between model generated networks and functional networks from data, complex interdependencies were revealed. This indicates the persistent co-activation of neuronal pathways in spontaneous bursts, as can be found in whole brain structures.
Resumo:
In the tropical middle atmosphere the climatological radiative equilibrium temperature is inconsistent with gradient-wind balance and the available angular momentum, especially during solstice seasons. Adjustment toward a balanced state results in a type of Hadley circulation that lies outside the “downward control” view of zonally averaged dynamics. This middle-atmosphere Hadley circulation is reexamined here using a zonally symmetric balance model driven through an annual cycle. It is found that the inclusion of a realistic radiation scheme leads to a concentration of the circulation near the stratopause and to its closing off in the mesosphere, with no need for relaxational damping or a rigid lid. The evolving zonal flow is inertially unstable, leading to a rapid process of inertial adjustment, which becomes significant in the mesosphere. This short-circuits the slower process of angular momentum homogenization by the Hadley circulation itself, thereby weakening the latter. The effect of the meridional circulation associated with extratropical wave drag on the Hadley circulation is considered. It is shown that the two circulations are independent for linear (quasigeostrophic) zonal-mean dynamics, and interact primarily through the advection of temperature and angular momentum. There appears to be no significant coupling in the deep Tropics via temperature advection since the wave-driven circulation is unable to alter meridional temperature gradients in this region. However, the wave-driven circulation can affect the Hadley circulation by advecting angular momentum out of the Tropics. The validity of the zonally symmetric balance model with parameterized inertial adjustment is tested by comparison with a three-dimensional primitive equations model. Fields from a middle-atmosphere GCM are also examined for evidence of these processes. While many aspects of the GCM circulation are indicative of the middle-atmosphere Hadley circulation, particularly in the upper stratosphere, it appears that the circulation is obscured in the mesosphere and lower stratosphere by other processes.
Resumo:
The encoding of goal-oriented motion events varies across different languages. Speakers of languages without grammatical aspect (e.g., Swedish) tend to mention motion endpoints when describing events, e.g., “two nuns walk to a house,”, and attach importance to event endpoints when matching scenes from memory. Speakers of aspect languages (e.g., English), on the other hand, are more prone to direct attention to the ongoingness of motion events, which is reflected both in their event descriptions, e.g., “two nuns are walking.”, and in their non-verbal similarity judgements. This study examines to what extent native speakers of Swedish (n = 82) with English as a foreign language (FL) restructure their categorisation of goal-oriented motion as a function of their English proficiency and experience with the English language (e.g., exposure, learning). Seventeen monolingual native English speakers from the United Kingdom (UK) were engaged for comparison purposes. Data on motion event cognition were collected through a memory-based triads matching task, in which a target scene with an intermediate degree of endpoint orientation was matched with two alternative scenes with low and high degrees of endpoint orientation, respectively. Results showed that the preference among the Swedish speakers of L2 English to base their similarity judgements on ongoingness rather than event endpoints was correlated with their use of English in their everyday lives, such that those who often watched television in English approximated the ongoingness preference of the English native speakers. These findings suggest that event cognition patterns may be restructured through the exposure to FL audio-visual media. The results thus add to the emerging picture that learning a new language entails learning new ways of observing and reasoning about reality.
Resumo:
ERA-Interim/Land is a global land surface reanalysis data set covering the period 1979–2010. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land is the result of a single 32-year simulation with the latest ECMWF (European Centre for Medium-Range Weather Forecasts) land surface model driven by meteorological forcing from the ERA-Interim atmospheric reanalysis and precipitation adjustments based on monthly GPCP v2.1 (Global Precipitation Climatology Project). The horizontal resolution is about 80 km and the time frequency is 3-hourly. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim data set, which makes it more suitable for climate studies involving land water resources. The quality of ERA-Interim/Land is assessed by comparing with ground-based and remote sensing observations. In particular, estimates of soil moisture, snow depth, surface albedo, turbulent latent and sensible fluxes, and river discharges are verified against a large number of site measurements. ERA-Interim/Land provides a global integrated and coherent estimate of soil moisture and snow water equivalent, which can also be used for the initialization of numerical weather prediction and climate models.
Resumo:
The advancement of e-learning technologies has made it viable for developments in education and technology to be combined in order to fulfil educational needs worldwide. E-learning consists of informal learning approaches and emerging technologies to support the delivery of learning skills, materials, collaboration and knowledge sharing. E-learning is a holistic approach that covers a wide range of courses, technologies and infrastructures to provide an effective learning environment. The Learning Management System (LMS) is the core of the entire e-learning process along with technology, content, and services. This paper investigates the role of model-driven personalisation support modalities in providing enhanced levels of learning and trusted assimilation in an e-learning delivery context. We present an analysis of the impact of an integrated learning path that an e-learning system may employ to track activities and evaluate the performance of learners.
Resumo:
Changes in the depth of Lake Viljandi between 1940 and 1990 were simulated using a lake water and energy-balance model driven by standard monthly weather data. Catchment runoff was simulated using a one-dimensional hydrological model, with a two-layer soil, a single-layer snowpack, a simple representation of vegetation cover and similarly modest input requirements. Outflow was modelled as a function of lake level. The simulated record of lake level and outflow matched observations of lake-level variations (r = 0.78) and streamflow (r = 0.87) well. The ability of the model to capture both intra- and inter-annual variations in the behaviour of a specific lake, despite the relatively simple input requirements, makes it extremely suitable for investigations of the impacts of climate change on lake water balance.
Resumo:
Countless cities are rapidly developing across the globe, pressing the need for clear urban planning and design recommendations geared towards sustainability. This article examines the intersections of Jane Jacobs’ four conditions for diversity with low-carbon and low-energy use urban systems in four cities around the world: Lyon (France), Chicago (United-States), Kolkata (India), and Singapore (Singapore). After reviewing Jacobs’ four conditions for diversity, we introduce the four cities and describe their historical development context. We then present a framework to study the cities along three dimensions: population and density, infrastructure development/use, and climate and landscape. These cities differ in many respects and their analysis is instructive for many other cities around the globe. Jacobs’ conditions are present in all of them, manifested in different ways and to varying degrees. Overall we find that the adoption of Jacobs' conditions seems to align well with concepts of low-carbon urban systems, with their focus on walkability, transit-oriented design, and more efficient land use (i.e., smaller unit sizes). Transportation sector emissions seems to demonstrate a stronger influence from the presence of Jacobs' conditions, while the link was less pronounced in the building sector. Kolkata, a low-income, developing world city, seems to possess many of Jacobs' conditions, while exhibiting low per capita emissions - maintaining both of these during its economic expansion will take careful consideration. Greenhouse gas mitigation, however, is inherently an in situ problem and the first task must therefore be to gain local knowledge of an area before developing strategies to lower its carbon footprint.
Resumo:
There are a number of factors that lead to non-linearity between precipitation anomalies and flood hazard; this non-linearity is a pertinent issue for applications that use a precipitation forecast as a proxy for imminent flood hazard. We assessed the degree of this non-linearity for the first time using a recently developed global-scale hydrological model driven by the ERA-Interim Land precipitation reanalysis (1980–2010). We introduced new indices to assess large-scale flood hazard, or floodiness, and quantified the link between monthly precipitation, river discharge and floodiness anomalies at the global and regional scales. The results show that monthly floodiness is not well correlated with precipitation, therefore demonstrating the value of hydrometeorological systems for providing floodiness forecasts for decision-makers. A method is described for forecasting floodiness using the Global Flood Awareness System, building a climatology of regional floodiness from which to forecast floodiness anomalies out to two weeks.