169 resultados para Model preditive control
Resumo:
This paper illustrates how internal model control of nonlinear processes can be achieved by recurrent neural networks, e.g. fully connected Hopfield networks. It is shown that using results developed by Kambhampati et al. (1995), that once a recurrent network model of a nonlinear system has been produced, a controller can be produced which consists of the network comprising the inverse of the model and a filter. Thus, the network providing control for the nonlinear system does not require any training after it has been trained to model the nonlinear system. Stability and other issues of importance for nonlinear control systems are also discussed.
Resumo:
This paper discusses the application of model reference adaptive control concepts to the automatic tuning of PID controllers. The effectiveness of the proposed method is shown through simulated applications. The gradient approach and simulated examples are provided.
Resumo:
This paper describes the application of artificial neural networks for automatic tuning of PID controllers using the Model Reference Adaptive Control approach. The effectiveness of the proposed method is shown through a simulated application.
Resumo:
In this paper, we show how a set of recently derived theoretical results for recurrent neural networks can be applied to the production of an internal model control system for a nonlinear plant. The results include determination of the relative order of a recurrent neural network and invertibility of such a network. A closed loop controller is produced without the need to retrain the neural network plant model. Stability of the closed-loop controller is also demonstrated.
Resumo:
Recurrent neural networks can be used for both the identification and control of nonlinear systems. This paper takes a previously derived set of theoretical results about recurrent neural networks and applies them to the task of providing internal model control for a nonlinear plant. Using the theoretical results, we show how an inverse controller can be produced from a neural network model of the plant, without the need to train an additional network to perform the inverse control.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.
Resumo:
Biological models of an apoptotic process are studied using models describing a system of differential equations derived from reaction kinetics information. The mathematical model is re-formulated in a state-space robust control theory framework where parametric and dynamic uncertainty can be modelled to account for variations naturally occurring in biological processes. We propose to handle the nonlinearities using neural networks.
Resumo:
The GEFSOC Project developed a system for estimating soil carbon (C) stocks and changes at the national and sub-national scale. As part of the development of the system, the Century ecosystem model was evaluated for its ability to simulate soil organic C (SOC) changes in environmental conditions in the Indo-Gangetic Plains, India (IGP). Two long-term fertilizer trials (LTFT), with all necessary parameters needed to run Century, were used for this purpose: a jute (Corchorus capsularis L.), rice (Oryza sativa L.) and wheat (Triticum aestivum L.) trial at Barrackpore, West Bengal, and a rice-wheat trial at Ludhiana, Punjab. The trials represent two contrasting climates of the IGP, viz. semi-arid, dry with mean annual rainfall (MAR) of < 800 mm and humid with > 1600 turn. Both trials involved several different treatments with different organic and inorganic fertilizer inputs. In general, the model tended to overestimate treatment effects by approximately 15%. At the semi-arid site, modelled data simulated actual data reasonably well for all treatments, with the control and chemical N + farm yard manure showing the best agreement (RMSE = 7). At the humid site, Century performed less well. This could have been due to a range of factors including site history. During the study, Century was calibrated to simulate crop yields for the two sites considered using data from across the Indian IGP. However, further adjustments may improve model performance at these sites and others in the IGP. The availability of more longterm experimental data sets (especially those involving flooded lowland rice and triple cropping systems from the IGP) for testing and validation is critical to the application of the model's predictive capabilities for this area of the Indian sub-continent. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
[1] We present a new, process-based model of soil and stream water dissolved organic carbon (DOC): the Integrated Catchments Model for Carbon (INCA-C). INCA-C is the first model of DOC cycling to explicitly include effects of different land cover types, hydrological flow paths, in-soil carbon biogeochemistry, and surface water processes on in-stream DOC concentrations. It can be calibrated using only routinely available monitoring data. INCA-C simulates daily DOC concentrations over a period of years to decades. Sources, sinks, and transformation of solid and dissolved organic carbon in peat and forest soils, wetlands, and streams as well as organic carbon mineralization in stream waters are modeled. INCA-C is designed to be applied to natural and seminatural forested and peat-dominated catchments in boreal and temperate regions. Simulations at two forested catchments showed that seasonal and interannual patterns of DOC concentration could be modeled using climate-related parameters alone. A sensitivity analysis showed that model predictions were dependent on the mass of organic carbon in the soil and that in-soil process rates were dependent on soil moisture status. Sensitive rate coefficients in the model included those for organic carbon sorption and desorption and DOC mineralization in the soil. The model was also sensitive to the amount of litter fall. Our results show the importance of climate variability in controlling surface water DOC concentrations and suggest the need for further research on the mechanisms controlling production and consumption of DOC in soils.
Resumo:
The Integrated Catchments model of Phosphorus dynamics (INCA-P) was applied to the River Lugg to determine the key factors controlling delivery of phosphorus to the main channel and to quantify the relative contribution of diffuse and point sources to the in-stream phosphorus (P) load under varying hydrological conditions. The model is able to simulate the seasonal variations and inter-annual variations in the in-stream total-phosphorus concentrations. However, difficulties in simulating diffuse inputs arise due to equifinality in the model structure and parameters. The River Lugg is split into upper and lower reaches. The upper reaches are dominated by grassland and woodland, so the patterns in the stream-water total-phosphorus concentrations are typical of diffuse source inputs; application of the model leads to estimates of the relative contribution to the in-stream P load from diffuse and point sources as 9:1. In the lower reaches, which are more intensively cultivated and urbanised, the stream-water total-phosphorus concentration dynamics are influenced more by point-sources; the simulated relative diffuse/point contribution to the in-stream P load is 1: 1. The model set-up and simulations are used to identify the key source-areas of P in the catchment, the P contribution of the Lugg to the River Wye during years with contrasting precipitation inputs, and the uptake and release of P from within-reach sediment. In addition, model scenarios are run to identify the impacts of likely P reductions at sewage treatment works on the in-stream soluble-reactive P concentrations and the suitability of this as a management option is assessed for reducing eutrophication.
Resumo:
In the 1960s, Jacob Bjerknes suggested that if the top-of-the-atmosphere (TOA) fluxes and the oceanic heat storage did not vary too much, then the total energy transport by the climate system would not vary too much either. This implies that any large anomalies of oceanic and atmospheric energy transport should be equal and opposite. This simple scenario has become known as Bjerknes compensation. A long control run of the Third Hadley Centre Coupled Ocean-Atmosphere General Circulation Model (HadCM3) has been investigated. It was found that northern extratropical decadal anomalies of atmospheric and oceanic energy transports are significantly anticorrelated and have similar magnitudes, which is consistent with the predictions of Bjerknes compensation. ne degree of compensation in the northern extratropics was found to increase with increasing, time scale. Bjerknes compensation did not occur in the Tropics, primarily as large changes in the surface fluxes were associated with large changes in the TOA fluxes. In the ocean, the decadal variability of the energy transport is associated with fluctuations in the meridional overturning circulation in the Atlantic Ocean. A stronger Atlantic Ocean energy transport leads to strong warming of surface temperatures in the Greenland-Iceland-Norwegian (GIN) Seas. which results in a reduced equator-to-pole surface temperature gradient and reduced atmospheric baroclinicity. It is argued that a stronger Atlantic Ocean energy transport leads to a weakened atmospheric transient energy transport.