74 resultados para Model free kinetics
Resumo:
Increased atmospheric concentrations of carbon dioxide (CO2) will benefit the yield of most crops. Two free air CO2 enrichment (FACE) meta-analyses have shown increases in yield of between 0 and 73% for C3 crops. Despite this large range, few crop modelling studies quantify the uncertainty inherent in the parameterisation of crop growth and development. We present a novel perturbed-parameter method of crop model simulation, which uses some constraints from observations, that does this. The model used is the groundnut (i.e. peanut; Arachis hypogaea L.) version of the general large-area model for annual crops (GLAM). The conclusions are of relevance to C3 crops in general. The increases in yield simulated by GLAM for doubled CO2 were between 16 and 62%. The difference in mean percentage increase between well-watered and water-stressed simulations was 6.8. These results were compared to FACE and controlled environment studies, and to sensitivity tests on two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., Bell, M.J., 1995. A peanut simulation model. I. Model development and testing. Agron. J. 87, 1085-1093]. The relationship between CO2 and water stress in the experiments and in the models was examined. From a physiological perspective, water-stressed crops are expected to show greater CO2 stimulation than well-watered crops. This expectation has been cited in literature. However, this result is not seen consistently in either the FACE studies or in the crop models. In contrast, leaf-level models of assimilation do consistently show this result. An analysis of the evidence from these models and from the data suggests that scale (canopy versus leaf), model calibration, and model complexity are factors in determining the sign and magnitude of the interaction between CO2 and water stress. We conclude from our study that the statement that 'water-stressed crops show greater CO2 stimulation than well-watered crops' cannot be held to be universally true. We also conclude, preliminarily, that the relationship between water stress and assimilation varies with scale. Accordingly, we provide some suggestions on how studies of a similar nature, using crop models of a range of complexity, could contribute further to understanding the roles of model calibration, model complexity and scale. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A mathematical model describing the uptake of low density lipoprotein (LDL) and very low density lipoprotein (VLDL) particles by a single hepatocyte cell is formulated and solved. The model includes a description of the dynamic change in receptor density on the surface of the cell due to the binding and dissociation of the lipoprotein particles, the subsequent internalisation of bound particles, receptors and unbound receptors, the recycling of receptors to the cell surface, cholesterol dependent de novo receptor formation by the cell and the effect that particle uptake has on the cell's overall cholesterol content. The effect that blocking access to LDL receptors by VLDL, or internalisation of VLDL particles containing different amounts of apolipoprotein E (we will refer to these particles as VLDL-2 and VLDL-3) has on LDL uptake is explored. By comparison with experimental data we find that measures of cell cholesterol content are important in differentiating between the mechanisms by which VLDL is thought to inhibit LDL uptake. We extend our work to show that in the presence of both types of VLDL particle (VLDL-2 and VLDL-3), measuring relative LDL uptake does not allow differentiation between the results of blocking and internalisation of each VLDL particle to be made. Instead by considering the intracellular cholesterol content it is found that internalisation of VLDL-2 and VLDL-3 leads to the highest intracellular cholesterol concentration. A sensitivity analysis of the model reveals that binding, unbinding and internalisation rates, the fraction of receptors recycled and the rate at which the cholesterol dependent free receptors are created by the cell have important implications for the overall uptake dynamics of either VLDL or LDL particles and subsequent intracellular cholesterol concentration. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In areas such as drug development, clinical diagnosis and biotechnology research, acquiring details about the kinetic parameters of enzymes is crucial. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. We demonstrate that a Bayesian approach (the use of prior knowledge) can produce major gains quantifiable in terms of information, productivity and accuracy of each experiment. Developing the use of Bayesian Utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has enabled the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-M and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
In the past two decades, the geometric pathways involved in the transformations between inverse bicontinuous cubic phases in amphiphilic systems have been extensively theoretically modeled. However, little experimental data exists on the cubic-cubic transformation in pure lipid systems. We have used pressure-jump time-resolved X-ray diffraction to investigate the transition between the gyroid Q(II)(G) and double-diamond Q(II)(D) phases in mixtures of 1-monoolein in 30 wt% water. We find for this system that the cubic-cubic transition occurs without any detectable intermediate structures. In addition, we have determined the kinetics of the transition, in both the forward and reverse directions, as a function of pressure-jump amplitude, temperature, and water content. A recently developed model allows (at least in principle) the calculation of the activation energy for lipid phase transitions from such data. The analysis is applicable only if kinetic reproducibility is achieved, at least within one sample, and achievement of such kinetic reproducibility is shown here, by carrying out prolonged pressure-cycling. The rate of transformation shows clear and consistent trends with pressure-jump amplitude, temperature, and water content, all of which are shown to be in agreement with the effect of the shift in the position of the cubic-cubic phase boundary following a change in the thermodynamic parameters.
Resumo:
Ab initio calculations using density functional theory have shown that the reactions that occur between artemisinin, 1, a cyclic trioxane active against malaria, and some metal ions and complexes lead to a series of radicals which are probably responsible for its therapeutic activity. In particular it has been shown that the interaction of Fe(H) with artemisinin causes the O-O bond to be broken as indeed does Fe(III) and Cu(I), while Zn(II) does not. Calculations were carried out with Fe(II) in several different forms including the bare ion, [Fe(H2O)(5)](2+) and [FeP(Im)] (P, porphyrin; Im, imadazole) and similar results were obtained. The resulting oxygen-based radicals are readily converted to more stable carbon-based radicals and/or. stable products. Similar radicals and products are also formed from two simple model trioxanes 2 and 3 that show little or no therapeutic action against malaria although some subtle differences were obtained. This suggests that the scaffold surrounding the pharmacophore may be involved in molecular recognition events allowing efficient uptake of this trioxane warhead into the parasite. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper presents in detail a theoretical adaptive model of thermal comfort based on the “Black Box” theory, taking into account factors such as culture, climate, social, psychological and behavioural adaptations, which have an impact on the senses used to detect thermal comfort. The model is called the Adaptive Predicted Mean Vote (aPMV) model. The aPMV model explains, by applying the cybernetics concept, the phenomena that the Predicted Mean Vote (PMV) is greater than the Actual Mean Vote (AMV) in free-running buildings, which has been revealed by many researchers in field studies. An Adaptive coefficient (λ) representing the adaptive factors that affect the sense of thermal comfort has been proposed. The empirical coefficients in warm and cool conditions for the Chongqing area in China have been derived by applying the least square method to the monitored onsite environmental data and the thermal comfort survey results.
Resumo:
Fecal water (FW) has been shown to exert, in cultured cells, cytotoxic and genotoxic effects that have implications for colorectal cancer (CRC) risk. We have investigated a further biological activity of FW, namely, the ability to affect gap junctions in CACO2 cell monolayers as an index of mucosal barrier function, which is known to be disrupted in cancer. FW samples fi-om healthy, free-living, European subjects that were divided into two broad age groups, adult (40 +/- 9.7 yr; n = 53) and elderly (76 +/- 7.5 yr; n = 55) were tested for effects on gap junction using the transepithelial resistance (TER) assay. Overall, treatment of CACO2 cells with FW samples fi-om adults increased TER (+ 4 %), whereas FW from elderly subjects decreased TER (-5%); the difference between the two groups was significant (P < 0.05). We also measured several components of FW potentially associated with modulation of TER, namely, short-chain fatty acid (SCFA) and ammonia. SCFAs (propionic, acetic, and n-butyric) were significantly lower in the elderly population (-30%, -35%, and -21%, respectively, all P pound 0.01). We consider that FW modulation of in vitro epithelial barrier function is a potentially useful noninvasive biomarker, but it requires further validation to establish its relationship to CRC risk.
Resumo:
The relationship between acrylamide and its precursors, namely, free asparagine and reducing sugars, was studied in cakes made from potato flake, wholemeal wheat, and wholemeal rye, cooked at 180 degreesC, from 5 to 60 min. Between 5 and 20 min, major losses of asparagine, water, and total reducing sugars were accompanied by large increases in acrylamide, which maximized in all three products between 25 and 30 min, followed by a slow linear reduction. Acrylamide formation did not occur to a large degree until the moisture contents of the cakes fell below 5%. Linear relationships were observed for acrylamide formation with the residual levels of asparagine and reducing sugars for all three food materials.
Resumo:
A mathematical growth model for the batch solid-state fermentation process for fungal tannase production was developed and tested experimentally. The unstructured model describes the uptake and growth kinetics of Penicillium glabrum in an impregnated polyurethane foam substrate system. In general, good agreement between the experimental data and model simulations was obtained. Biomass, tannase and spore production are described by logistic kinetics with a time delay between biomass production and tannase and spore formation. Possible induction mechanisms for the latter are proposed. Hydrolysis of tannic acid, the main carbon source in the substrate system, is reasonably well described with Michaelis-Menten kinetics with time-varying enzyme concentration but a more complex reaction mechanism is suspected. The metabolism of gallic acid, a tannase-hydrolysis product of tannic acid, was shown to be growth limiting during the main growth phase. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Several studies have highlighted the importance of the cooling period in oil absorption in deep-fat fried products. Specifically, it has been established that the largest proportion of oil which ends up into the food, is sucked into the porous crust region after the fried product is removed from the oil bath, stressing the importance of this time interval. The main objective of this paper was to develop a predictive mechanistic model that can be used to understand the principles behind post-frying cooling oil absorption kinetics, which can also help identifying the key parameters that affect the final oil intake by the fried product. The model was developed for two different geometries, an infinite slab and an infinite cylinder, and was divided into two main sub-models, one describing the immersion frying period itself and the other describing the post-frying cooling period. The immersion frying period was described by a transient moving-front model that considered the movement of the crust/core interface, whereas post-frying cooling oil absorption was considered to be a pressure driven flow mediated by capillary forces. A key element in the model was the hypothesis that oil suction would only begin once a positive pressure driving force had developed. The mechanistic model was based on measurable physical and thermal properties, and process parameters with no need of empirical data fitting, and can be used to study oil absorption in any deep-fat fried product that satisfies the assumptions made.
Resumo:
The combined effect of pressure and temperature on the rate of gelatinisation of starch present in Thai glutinous rice was investigated. Pressure was found to initiate gelatinisation when its value exceeded 200 MPa at ambient temperature. On the other hand, complete gelatinisation was observed at 500 and 600 MPa at 70 degrees C, when the rice was soaked in water under these conditions for 120 min. A first-order kinetic model describing the rate of gelatinisation was developed to estimate the values of the rate constants as a function of pressure and temperature in the range: 0.1-600 MPa and 20-70 degrees C. The model, based on the well-known Arrhenius and Eyring equations, assumed the form [GRAPHICS] The constants k(0), E-a, and Delta V were found to take values: 31.19 s(-1), 37.89 kJ mol(-1) and -9.98 cm(3) mol(-1), respectively. It was further noted that the extent of gelatinisation occurring at any time, temperature and pressure, could be exclusively correlated with the grain moisture content. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.
Resumo:
Two quantum-kinetic models of ultrafast electron transport in quantum wires are derived from the generalized electron-phonon Wigner equation. The various assumptions and approximations allowing one to find closed equations for the reduced electron Wigner function are discussed with an emphasis on their physical relevance. The models correspond to the Levinson and Barker-Ferry equations, now generalized to account for a space-dependent evolution. They are applied to study the quantum effects in the dynamics of an initial packet of highly nonequilibrium carriers, locally generated in the wire. The properties of the two model equations are compared and analyzed.
Resumo:
The alignment of model amyloid peptide YYKLVFFC is investigated in bulk and at a solid surface using a range of spectroscopic methods employing polarized radiation. The peptide is based on a core sequence of the amyloid beta (A beta) peptide, KLVFF. The attached tyrosine and cysteine units are exploited to yield information on alignment and possible formation of disulfide or dityrosine links. Polarized Raman spectroscopy on aligned stalks provides information on tyrosine orientation, which complements data from linear dichroism (LD) on aqueous solutions subjected to shear in a Couette cell. LD provides a detailed picture of alignment of peptide strands and aromatic residues and was also used to probe the kinetics of self-assembly. This suggests initial association of phenylalanine residues, followed by subsequent registry of strands and orientation of tyrosine residues. X-ray diffraction (XRD) data from aligned stalks is used to extract orientational order parameters from the 0.48 nm reflection in the cross-beta pattern, from which an orientational distribution function is obtained. X-ray diffraction on solutions subject to capillary flow confirmed orientation in situ at the level of the cross-beta pattern. The information on fibril and tyrosine orientation from polarized Raman spectroscopy is compared with results from NEXAFS experiments on samples prepared as films on silicon. This indicates fibrils are aligned parallel to the surface, with phenyl ring normals perpendicular to the surface. Possible disulfide bridging leading to peptide dimer formation was excluded by Raman spectroscopy, whereas dityrosine formation was probed by fluorescence experiments and was found not to occur except under alkaline conditions. Congo red binding was found not to influence the cross-beta XRD pattern.
Resumo:
A cross-platform field campaign, OP3, was conducted in the state of Sabah in Malaysian Borneo between April and July of 2008. Among the suite of observations recorded, the campaign included measurements of NOx and O3 – crucial outputs of any model chemistry mechanism. We describe the measurements of these species made from both the ground site and aircraft. We then use the output from two resolutions of the chemistry transport model p-TOMCAT to illustrate the ability of a global model chemical mechanism to capture the chemistry at the rainforest site. The basic model performance is good for NOx and poor for ozone. A box model containing the same chemical mechanism is used to explore the results of the global model in more depth and make comparisons between the two. Without some parameterization of the nighttime boundary layer – free troposphere mixing (i.e. the use of a dilution parameter), the box model does not reproduce the observations, pointing to the importance of adequately representing physical processes for comparisons with surface measurements. We conclude with a discussion of box model budget calculations of chemical reaction fluxes, deposition and mixing, and compare these results to output from p-TOMCAT. These show the same chemical mechanism behaves similarly in both models, but that emissions and advection play particularly strong roles in influencing the comparison to surface measurements.