19 resultados para Mitochondrial DNA mtDNA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective was to determine the presence or absence of transgenic and endogenous plant DNA in ruminal fluid, duodenal digesta, milk, blood, and feces, and if found, to determine fragment size. Six multiparous lactating Holstein cows fitted with ruminal and duodenal cannulas received a total mixed ration. There were two treatments (T). In T1, the concentrate contained genetically modified (GM) soybean meal (cp4epsps gene) and GM corn grain (cry1a[b] gene), whereas T2 contained the near isogenic non-GM counterparts. Polymerase chain reaction analysis was used to determine the presence or absence of DNA sequences. Primers were selected to amplify small fragments from single-copy genes (soy lectin and corn high-mobility protein and cp4epsps and cry1a[b] genes from the GM crops) and multicopy genes (bovine mitochondrial cytochrome b and rubisco). Single-copy genes were only detected in the solid phase of rumen and duodenal digesta. In contrast, fragments of the rubisco gene were detected in the majority of samples analyzed in both the liquid and solid phases of ruminal and duodenal digesta, milk, and feces, but rarely in blood. The size of the rubisco gene fragments detected decreased from 1176 bp in ruminal and duodenal digesta to 351 bp in fecal samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective was to determine the presence or absence of transgenic and endogenous plant DNA in ruminal fluid, duodenal digesta, milk, blood, and feces, and if found, to determine fragment size. Six multiparous lactating Holstein cows fitted with ruminal and duodenal cannulas received a total mixed ration. There were two treatments (T). In T1, the concentrate contained genetically modified (GM) soybean meal (cp4epsps gene) and GM corn grain (cry1a[b] gene), whereas T2 contained the near isogenic non-GM counterparts. Polymerase chain reaction analysis was used to determine the presence or absence of DNA sequences. Primers were selected to amplify small fragments from single-copy genes (soy lectin and corn high-mobility protein and cp4epsps and cry1a[b] genes from the GM crops) and multicopy genes (bovine mitochondrial cytochrome b and rubisco). Single-copy genes were only detected in the solid phase of rumen and duodenal digesta. In contrast, fragments of the rubisco gene were detected in the majority of samples analyzed in both the liquid and solid phases of ruminal and duodenal digesta, milk, and feces, but rarely in blood. The size of the rubisco gene fragments detected decreased from 1176 bp in ruminal and duodenal digesta to 351 bp in fecal samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Molecular tools may help to uncover closely related and still diverging species from a wide variety of taxa and provide insight into the mechanisms, pace and geography of marine speciation. There is a certain controversy on the phylogeography and speciation modes of species-groups with an Eastern Atlantic-Western Indian Ocean distribution, with previous studies suggesting that older events (Miocene) and/or more recent (Pleistocene) oceanographic processes could have influenced the phylogeny of marine taxa. The spiny lobster genus Palinurus allows for testing among speciation hypotheses, since it has a particular distribution with two groups of three species each in the Northeastern Atlantic (P. elephas, P. mauritanicus and P. charlestoni) and Southeastern Atlantic and Southwestern Indian Oceans (P. gilchristi, P. delagoae and P. barbarae). In the present study, we obtain a more complete understanding of the phylogenetic relationships among these species through a combined dataset with both nuclear and mitochondrial markers, by testing alternative hypotheses on both the mutation rate and tree topology under the recently developed approximate Bayesian computation (ABC) methods. Results: Our analyses support a North-to-South speciation pattern in Palinurus with all the South-African species forming a monophyletic clade nested within the Northern Hemisphere species. Coalescent-based ABC methods allowed us to reject the previously proposed hypothesis of a Middle Miocene speciation event related with the closure of the Tethyan Seaway. Instead, divergence times obtained for Palinurus species using the combined mtDNA-microsatellite dataset and standard mutation rates for mtDNA agree with known glaciation-related processes occurring during the last 2 my. Conclusion: The Palinurus speciation pattern is a typical example of a series of rapid speciation events occurring within a group, with very short branches separating different species. Our results support the hypothesis that recent climate change-related oceanographic processes have influenced the phylogeny of marine taxa, with most Palinurus species originating during the last two million years. The present study highlights the value of new coalescent-based statistical methods such as ABC for testing different speciation hypotheses using molecular data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac myocyte apoptosis is potentially important in many cardiac disorders. In other cells, Bcl-2 family proteins and mitochondrial dysfunction are probably key regulators of the apoptotic response. In the present study, we characterized the regulation of antiapoptotic (Bcl-2, Bcl-xL) and proapoptotic (Bad, Bax) Bcl-2 family proteins in the rat heart during development and in oxidative stress-induced apoptosis. Bcl-2 and Bcl-xL were expressed at high levels in the neonate, and their expression was sustained during development. In contrast, although Bad and Bax were present at high levels in neonatal hearts, they were barely detectable in adult hearts. We confirmed that H(2)O(2) induced cardiac myocyte cell death, stimulating poly(ADP-ribose) polymerase proteolysis (from 2 hours), caspase-3 proteolysis (from 2 hours), and DNA fragmentation (from 8 hours). In unstimulated neonatal cardiac myocytes, Bcl-2 and Bcl-xL were associated with the mitochondria, but Bad and Bax were predominantly present in a crude cytosolic fraction. Exposure of myocytes to H(2)O(2) stimulated rapid translocation of Bad (<5 minutes) to the mitochondria. This was followed by the subsequent degradation of Bad and Bcl-2 (from approximately 30 minutes). The levels of the mitochondrial membrane marker cytochrome oxidase remained unchanged. H(2)O(2) also induced translocation of cytochrome c from the mitochondria to the cytosol within 15 to 30 minutes, which was indicative of mitochondrial dysfunction. Myocytes exposed to H(2)O(2) showed an early loss of mitochondrial membrane potential (assessed by fluorescence-activated cell sorter analysis) from 15 to 30 minutes, which was partially restored by approximately 1 hour. However, a subsequent irreversible loss of mitochondrial membrane potential occurred that correlated with cell death. These data suggest that the regulation of Bcl-2 and mitochondrial function are important factors in oxidative stress-induced cardiac myocyte apoptosis.