141 resultados para Microbiota bucal
Resumo:
Aim: To investigate the effect of native, heated and glycated bovine serum albumin (BSA) on the ulcerative colitis (UC) and non-UC colonic microbiota in vitro. Methods and Results: Continuous flow culture (CFC) models of the human colonic microbiota inoculated with faeces from UC and non-UC volunteers were maintained on BSA as growth substrate. Changes in bacterial populations and short-chain fatty acids were determined. UC and non-UC microbiota differed significantly in microbial populations, with elevated numbers of sulfate-reducing bacteria (SRB) and clostridia in the microbiota from UC patients. Compared with native BSA, glycated BSA modulated the gut microbiota of UC patients in vitro towards a more detrimental community structure with significant increases in putatively harmful bacteria (clostridia, bacteroides and SRB; P < 0.009) and decreases in dominant and putatively beneficial bacterial groups (eubacteria and bifidobacteria; P < 0.0004). The levels of beneficial short-chain fatty acids were significantly decreased by heated or glycated BSA, but were increased significantly by native BSA. Conclusion: The UC colonic microbiota maintained in CFC was significantly modified by glycated BSA. Significance and Impact of the Study: Results suggest that dietary glycated protein may impact upon the composition and activity of the colonic microbiota, an important environmental variable in UC.
Resumo:
This study probed the possible effects of type III resistant starch (RS) crystalline polymorphism on RS fermentability by human gut microbiota and the short chain fatty acids production in vitro. Human fecal pH-controlled batch cultures showed RS induces an ecological shift in the colonic microbiota with polymorph B inducing Bifidobacterium spp. and polymorph A inducing Atopobium spp. Interestingly, polymorph B also induced higher butyrate production to levels of 0.79 mM. In addition, human gut simulation demonstrated that polymorph B promotes the growth of bifidobacteria in the proximal part of the colon and double their relative proportion in the microbiota in the distal colon. These findings suggest that RS polymorph B may promote large bowel health. While the findings are limited by study constraints, they do raise the possibility of using different thermal processing to delineate differences in the prebiotic capabilities of RS, especially its butryrogenicity in the human colon.
Resumo:
The composition of the colonic microbiota of 91 northern Europeans was characterized by fluorescent in situ hybridization using 18 phylogenetic probes. On average 75% of the bacteria were identified, and large interindividual variations were observed. Clostridium coccoides and Clostridium leptum were the dominant groups (28.0% and 25.2%), followed by the Bacteroides (8.5%). According to principal component analysis, no significant grouping with respect to geographic origin, age, or gender was observed.
Resumo:
Fermentation of beta-glucan fractions from barley [average molecular mass (MM), of 243, 172, and 137 kDa] and oats (average MM of 230 and 150 kDa) by the human faecal microbiota was investigated. Fractions were supplemented to pH-controlled anaerobic batch culture fermenters inoculated with human faecal samples from three donors, in triplicate, for each substrate. Microbiota changes were monitored by fluorescent in situ hybridization; groups enumerated were: Bifidobacterium genus, Bacteroides and Prevotella group, Clostridium histolyticum subgroup, Ruminococcus-Eubacterium-Clostridium (REC) cluster, Lactobacillus-Enterococcus group, Atopobium cluster, and clostridial cluster IX. Short-chain fatty acids and lactic acid were measured by HPLC. The C. histolyticum subgroup increased significantly in all vessels and clostridial cluster IX maintained high populations with all fractions. The Bacteroides-Prevotella group increased with all but the 243-kDa barley and 230-kDa oat substrates. In general beta-glucans displayed no apparent prebiotic potential. The SCFA profile (51 : 32 : 17; acetate : propionate : butyrate) was considered propionate-rich. In a further study a beta-glucan oligosaccharide fraction was produced with a degree of polymerization of 3-4. This fraction was supplemented to small-scale faecal batch cultures and gave significant increases in the Lactobacillus-Enterococcus group; however, the prebiotic potential of this fraction was marginal compared with that of inulin.
What do we mean when we refer to Bacteroidetes populations in the human gastrointestinal microbiota?
Resumo:
Recent large-scale cloning studies have shown that the ratio of Bacteroidetes to Firmicutes may be important in the obesity-associated gut microbiota, but the species these phyla represent in this ecosystem has not been examined. The Bacteroidetes data from the recent Turnbaugh study were examined to determine those members of the phylum detected in human faecal samples. In addition, FISH analysis was performed on faecal samples from 17 healthy, nonobese donors using probe Bac303, routinely used by gut microbiologists to enumerate BacteroidesPrevotella populations in faecal samples, and another probe (CFB286) whose target range has some overlap with that of Bac303. Sequence analysis of the Turnbaugh data showed that 23/519 clones were chimeras or erroneous sequences; all good sequences were related to species of the order Bacteroidales, but no one species was present in all donors. FISH analysis demonstrated that approximately one-quarter of the healthy, nonobese donors harboured high numbers of Bacteroidales not detected by probe Bac303. It is clear that Bacteroidales populations in human faecal samples have been underestimated in FISH-based studies. New probes and complementary primer sets should be designed to examine numerical and compositional changes in the Bacteroidales during dietary interventions and in studies of the obesity-associated microbiota in humans and animal model systems.
Resumo:
Prebiotics are non-digestible (by the host) food ingredients that have a beneficial effect through their selective metabolism in the intestinal tract. Key to this is the specificity of microbial changes. The present paper reviews the concept in terms of three criteria: (a) resistance to gastric acidity, hydrolysis by mammalian enzymes and gastrointestinal absorption; (b) fermentation by intestinal microflora; (c) selective stimulation of the growth and/or activity of intestinal bacteria associated with health and wellbeing. The conclusion is that prebiotics that currently fulfil these three criteria are fructo-oligosaccharides, galacto-oligosaccharides and lactulose, although promise does exist with several other dietary carbohydrates. Given the range of food vehicles that may be fortified by prebiotics, their ability to confer positive microflora changes and the health aspects that may accrue, it is important that robust technologies to assay functionality are used. This would include a molecular-based approach to determine flora changes. The future use of prebiotics may allow species-level changes in the microbiota, an extrapolation into genera other than the bifidobacteria and lactobacilli, and allow preferential use in disease-prone areas of the body.
Resumo:
The incidence of obesity has reached alarming levels worldwide, thus increasing the risk of development of metabolic disorders (e.g. type 2 diabetes, coronary heart disease (CHD) and cancer). Among the causes of obesity, diet and lifestyle play a central role. Although the treatment of obesity may appear quite straightforward, by simply re-addressing the balance between energy intake and energy expenditure, practically it has been very challenging. In the search for new therapeutic targets for treatment of obesity and related disorders, the gut microbiota and its activities have been investigated in relation to obesity. The human gut microbiota has already been shown to influence total energy intake and lipid metabolism, particularly through colonic fermentation of undigestible dietary constituents and production of short chain fatty acids (SCFA). Recent studies have highlighted the contribution of the gut microbiota to mammalian metabolism and energy harvested from the diet. A dietary modulation of the gut microbiota and its metabolic output could positively influence host metabolism and, therefore, constitute a potential coadjutant approach in the management of obesity and weight loss.
Resumo:
Coronary heart disease (CHD) is the leading cause of mortality in Western societies, affecting about one third of the population before their seventieth year. Over the past decades modifiable risk factors of CHD have been identified, including smoking and diet. These factors when altered can have a significant impact on an individuals' risk of developing CHD, their overall health and quality of life. There is strong evidence suggesting that dietary intake of plant foods rich in fibre and polyphenolic compounds, effectively lowers the risk of developing CHD. However, the efficacy of these foods often appears to be greater than the sum of their recognised biologically active parts. Here we discuss the hypothesis that beneficial metabolic and vascular effects of dietary fibre and plant polyphenols are due to an up regulation of the colon-systemic metabolic axis by these compounds. Fibres and many polyphenols are converted into biologically active compounds by the colonic microbiota. This microbiota imparts great metabolic versatility and dynamism, with many of their reductive or hydrolytic activities appearing complementary to oxidative or conjugative human metabolism. Understanding these microbial activities is central to determining the role of different dietary components in preventing or beneficially impacting on the impaired lipid metabolism and vascular dysfunction that typifies CHD and type 11 diabetes. This approach lays the foundation for rational selection of health promoting foods, rational target driven design of functional foods, and provides an essential thus-far, overlooked, dynamic to our understanding of how foods recognised as "healthy" impact on the human metabonome.
Resumo:
Epidemiological studies have shown an inverse association between dietary intake of whole grains and the risk of chronic disease. This may be related to the ability to mediate a prebiotic modulation of gut microbiota. However, no studies have been conducted on the microbiota modulatory capability of whole-grain (WG) cereals. In the present study, the impact of WG wheat on the human intestinal microbiota compared to wheat bran (WB) was determined. A double-blind, randomised, crossover study was carried out in thirty-one volunteers who were randomised into two groups and consumed daily 48g breakfast cereals, either WG or WB, in two 3-week study periods, separated by a 2-week washout period. Numbers of faecal bifidobacteria and lactobacilli (the target genera for prebiotic intake), were significantly higher upon WG ingestion compared with WB. Ingestion of both breakfast cereals resulted in a significant increase in ferulic acid concentrations in blood but no discernible difference in faeces or urine. No significant differences in faecal SCFA, fasting blood glucose, insulin, total cholesterol (TC), TAG or HDL-cholesterol were observed upon ingestion of WG compared with WB. However, a significant reduction in TC was observed in volunteers in the top quartile of TC concentrations upon ingestion of either cereal. No adverse intestinal symptoms were reported and WB ingestion increased stool frequency. Daily consumption of WG wheat exerted a pronounced prebiotic effect on the human gut microbiota composition. This prebiotic activity may contribute towards the beneficial physiological effects of WG wheat.
Resumo:
The aim of the study was to evaluate whether supplementation of milk-formulas with prebiotic fructooligosaccharides or a probiotic, Lactobacillus johnsonii La1 (La1), could modulate the composition of the fecal microbiota of formula-fed infants, compared to breastfed (BF) infants. Ninety infants close to 4 months of age were randomized into one of three groups to be blindly assigned to receive for 13 weeks: a) an infant formula (Control), b) the same formula with fructo-oligosaccharides (Prebio), or c) with La1 (Probio). At the end of this period, all infants received the control formula for 2 additional weeks. Twenty-six infants, breastfed throughout the study, were recruited to form group BF. Fecal samples were obtained upon enrolment and after 7 and 15 weeks. Bacterial populations were assessed with classical culture techniques and fluorescent in situ hybridisation (FISH). Seventy-six infants completed the study. On enrolment, higher counts of Bifidobacterium and Lactobacillus and lower counts of enterobacteria were observed in BF compared to the formula-fed infants; these differences tended to disappear at weeks 7 and 15. No major differences for Clostridium, Bacteroides or Enterococcus were observed between the groups or along the follow up. Probio increased fecal Lactobacillus counts (P<0.001); 88% of the infants in this group excreted live La1 in their stools at week 7 but only 17% at week 15. Increased Bifidobacterium counts were observed at week 7 in the 3 formula groups, similar to BF infants. These results confirm the presence of higher counts of bifidobacteria and lactobacilli in the microbiota of BF infants compared to formula-fed infants before dietary diversification, and that La1 survives in the infant digestive tract.
Resumo:
Objective: Certain milk factors may promote the growth of a host-friendly gastrointestinal microbiota, for example, one that is predominated by bifidobacteria, a perceived healthpromoting genus. This may explain why breast-fed infants experience fewer intestinal infections than their formula-fed counterparts who are believed to have a more diverse microbiota, which is similar to that of adults. The effects of formulas supplemented with 2 such ingredients from bovine milk, a-lactalbumin (alpha-lac) and casein glycomacropeptide (GMP), on gut flora were investigated in this study. Patients and Methods: Six-week-old (4-8 wk), healthy term infants were randomised to a standard infant formula or 1 of 2 test formulae enriched in alpha-Jac with higher or lower GMP until 6 months. Faecal bacteriology was determined by the culture-independent procedure fluorescence in situ hybridisation. Results: There was a large fluctuation of bacterial counts within groups with no statistically significant differences between groups. Although all groups showed a. predominance of bifidobacteria, breast-fed infants had a small temporary increase in counts. Other bacterial levels varied in formula-fed groups, which overall showed an adult-like faecal microflora. Conclusions: It can be speculated that a prebiotic effect for alpha-lac and GMP is achieved only with low starting populations of beneficial microbiota (eg, infants not initially breast-fed.
Resumo:
Epidemiological studies and healthy eating guidelines suggest a positive correlation between ingestion of whole grain cereal and food rich in fibre with protection from chronic diseases. The prebiotic potential of whole grains may be related, however, little is known about the microbiota modulatory capability of oat grain or the impact processing has on this ability. In this study the fermentation profile of whole grain oat flakes, processed to produce two different sized flakes (small and large), by human faecal microbiota was investigated in vitro. Simulated digestion and subsequent fermentation by gut bacteria was investigated using pH controlled faecal batch cultures inoculated with human faecal slurry. The different sized oat flakes, Oat 23’s (0.53–0.63 mm) and Oat 25’s/26’s (0.85–1.0 mm) were compared to oligofructose, a confirmed prebiotic, and cellulose, a poorly fermented carbohydrate. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation, and short chain fatty acid (SCFA) production monitored by gas chromatography. Significant changes in total bacterial populations were observed after 24 h incubation for all substrates except Oat 23’s and cellulose. Oats 23’s fermentation resulted in a significant increase in the Bacteroides–Prevotella group. Oligofructose and Oats 25’s/26’s produced significant increases in Bifidobacterium in the latter stages of fermentation while numbers declined for Oats 23’s between 5 h and 24 h. This is possibly due to the smaller surface area of the larger flakes inhibiting the simulated digestion, which may have resulted in increased levels of resistant starch (Bifidobacterium are known to ferment this dietary fibre). Fermentation of Oat 25’s/26’s resulted in a propionate rich SCFA profile and a significant increase in butyrate, which have both been linked to benefiting host health. The smaller sized oats did not produce a significant increase in butyrate concentration. This study shows for the first time the impact of oat grain on the microbial ecology of the human gut and its potential to beneficially modulate the gut microbiota through increasing Bifidobacterium population.
Resumo:
The aims of this study were to assess the impact of coffee derived mannooligosaccharides on the faecal microbiota of a healthy UK based population. Methods and Results: A double-blind, placebo-controlled, crossover human intervention study was conducted. Volunteers were assigned, 3g MOS, 5g MOS and placebo coffee preparations, to consume daily over a 3 wks, followed by a 2 wk washout period. Faecal samples were collected, and microbial population characterised using fluorescence in situ hybridization. Short-chain and branched-chain fatty acid profiles were obtained by gas chromatography. All treatments led to significant lactobacilli increases (placebo, p < 0.001; 3g, p = 0.04; 5g, p=0.04). The 3g treatment led to a significant bifidobacteria increase (p=0.001). Significantly less iso-valerate was found in faeces following 3g MOS daily (p=0.05). Conclusions: The 3g dose of MOS led to a potentially beneficial shift in the faecal microbiota. MOS was therefore confirmed to be a prebiotic at 3g dose. Significance and Impact of Study: This study provides confirmation of a new novel prebiotic, that can be considered for incorporation into a wider variety of food products, to provide different selective and nutritional properties.