17 resultados para Metal-based catalysts


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A metal organic framework of Cu-II, tartarate (tar) and 2,2'-bipyridyl (2,2'-bipy)], {[Cu(tar)(2,2'-bipy)]center dot 5H(2)O}(n)} (1) has been synthesized at the mild ambient condition and characterized by single crystal X-ray crystallography. In the compound, the Cu(2,2'-bipy) entities are bridged by tartarate ions which are coordinated to Cu-II by both hydroxyl and monodentate carboxylate oxygen to form a one-dimensional chain. The non-coordinated water molecules form ID water chains by edge-sharing cyclic water pentamers along with dangling water dimers. It shows reversible water expulsion upon heating. The water chains join the ID coordination polymeric chains to a 31) network through hydrogen-bond interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) can be exceptionally good catalytic materials thanks to the presence of active metal centres and a porous structure that is advantageous for molecular adsorption and confinement. We present here a first-principles investigation of the electronic structure of a family of MOFs based on porphyrins connected through phenyl-carboxyl ligands and AlOH species, in order to assess their suitability for the photocatalysis of fuel production reactions using sunlight. We consider structures with protonated porphyrins and those with the protons exchanged with late 3d metal cations (Fe2+, Co2+, Ni2+, Cu2+, Zn2+), a process that we find to be thermodynamically favorable from aqueous solution for all these metals. Our band structure calculations, based on an accurate screened hybrid functional, reveal that the bandgaps are in a favorable range (2.0 to 2.6 eV) for efficient adsorption of solar light. Furthermore, by approximating the vacuum level to the pore center potential, we provide the alignment of the MOFs’ band edges with the redox potentials for water splitting and carbon dioxide reduction, and show that the structures studied here have band edges positions suitable for these reactions at neutral pH.