27 resultados para Meta Data, Semantic Web, Software Maintenance, Software Metrics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

SOA (Service Oriented Architecture), workflow, the Semantic Web, and Grid computing are key enabling information technologies in the development of increasingly sophisticated e-Science infrastructures and application platforms. While the emergence of Cloud computing as a new computing paradigm has provided new directions and opportunities for e-Science infrastructure development, it also presents some challenges. Scientific research is increasingly finding that it is difficult to handle “big data” using traditional data processing techniques. Such challenges demonstrate the need for a comprehensive analysis on using the above mentioned informatics techniques to develop appropriate e-Science infrastructure and platforms in the context of Cloud computing. This survey paper describes recent research advances in applying informatics techniques to facilitate scientific research particularly from the Cloud computing perspective. Our particular contributions include identifying associated research challenges and opportunities, presenting lessons learned, and describing our future vision for applying Cloud computing to e-Science. We believe our research findings can help indicate the future trend of e-Science, and can inform funding and research directions in how to more appropriately employ computing technologies in scientific research. We point out the open research issues hoping to spark new development and innovation in the e-Science field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a hierarchical clustering method for semantic Web service discovery. This method aims to improve the accuracy and efficiency of the traditional service discovery using vector space model. The Web service is converted into a standard vector format through the Web service description document. With the help of WordNet, a semantic analysis is conducted to reduce the dimension of the term vector and to make semantic expansion to meet the user’s service request. The process and algorithm of hierarchical clustering based semantic Web service discovery is discussed. Validation is carried out on the dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building Information Modeling (BIM) is the process of structuring, capturing, creating, and managing a digital representation of physical and/or functional characteristics of a built space [1]. Current BIM has limited ability to represent dynamic semantics, social information, often failing to consider building activity, behavior and context; thus limiting integration with intelligent, built-environment management systems. Research, such as the development of Semantic Exchange Modules, and/or the linking of IFC with semantic web structures, demonstrates the need for building models to better support complex semantic functionality. To implement model semantics effectively, however, it is critical that model designers consider semantic information constructs. This paper discusses semantic models with relation to determining the most suitable information structure. We demonstrate how semantic rigidity can lead to significant long-term problems that can contribute to model failure. A sufficiently detailed feasibility study is advised to maximize the value from the semantic model. In addition we propose a set of questions, to be used during a model’s feasibility study, and guidelines to help assess the most suitable method for managing semantics in a built environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We utilized an ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to estimate carbon fluxes of gross primary productivity and total ecosystem respiration of a high-elevation coniferous forest. The data assimilation routine incorporated aggregated twice-daily measurements of the net ecosystem exchange of CO2 (NEE) and satellite-based reflectance measurements of the fraction of absorbed photosynthetically active radiation (fAPAR) on an eight-day timescale. From these data we conducted a data assimilation experiment with fifteen different combinations of available data using twice-daily NEE, aggregated annual NEE, eight-day f AP AR, and average annual fAPAR. Model parameters were conditioned on three years of NEE and fAPAR data and results were evaluated to determine the information content from the different combinations of data streams. Across the data assimilation experiments conducted, model selection metrics such as the Bayesian Information Criterion and Deviance Information Criterion obtained minimum values when assimilating average annual fAPAR and twice-daily NEE data. Application of wavelet coherence analyses showed higher correlations between measured and modeled fAPAR on longer timescales ranging from 9 to 12 months. There were strong correlations between measured and modeled NEE (R2, coefficient of determination, 0.86), but correlations between measured and modeled eight-day fAPAR were quite poor (R2 = −0.94). We conclude that this inability to determine fAPAR on eight-day timescale would improve with the considerations of the radiative transfer through the plant canopy. Modeled fluxes when assimilating average annual fAPAR and annual NEE were comparable to corresponding results when assimilating twice-daily NEE, albeit at a greater uncertainty. Our results support the conclusion that for this coniferous forest twice-daily NEE data are a critical measurement stream for the data assimilation. The results from this modeling exercise indicate that for this coniferous forest, average annuals for satellite-based fAPAR measurements paired with annual NEE estimates may provide spatial detail to components of ecosystem carbon fluxes in proximity of eddy covariance towers. Inclusion of other independent data streams in the assimilation will also reduce uncertainty on modeled values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contamination of the electroencephalogram (EEG) by artifacts greatly reduces the quality of the recorded signals. There is a need for automated artifact removal methods. However, such methods are rarely evaluated against one another via rigorous criteria, with results often presented based upon visual inspection alone. This work presents a comparative study of automatic methods for removing blink, electrocardiographic, and electromyographic artifacts from the EEG. Three methods are considered; wavelet, blind source separation (BSS), and multivariate singular spectrum analysis (MSSA)-based correction. These are applied to data sets containing mixtures of artifacts. Metrics are devised to measure the performance of each method. The BSS method is seen to be the best approach for artifacts of high signal to noise ratio (SNR). By contrast, MSSA performs well at low SNRs but at the expense of a large number of false positive corrections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Consider the statement "this project should cost X and has risk of Y". Such statements are used daily in industry as the basis for making decisions. The work reported here is part of a study aimed at providing a rational and pragmatic basis for such statements. Of particular interest are predictions made in the requirements and early phases of projects. A preliminary model has been constructed using Bayesian Belief Networks and in support of this, a programme to collect and study data during the execution of various software development projects commenced in May 2002. The data collection programme is undertaken under the constraints of a commercial industrial regime of multiple concurrent small to medium scale software development projects. Guided by pragmatism, the work is predicated on the use of data that can be collected readily by project managers; including expert judgements, effort, elapsed times and metrics collected within each project.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GODIVA2 is a dynamic website that provides visual access to several terabytes of physically distributed, four-dimensional environmental data. It allows users to explore large datasets interactively without the need to install new software or download and understand complex data. Through the use of open international standards, GODIVA2 maintains a high level of interoperability with third-party systems, allowing diverse datasets to be mutually compared. Scientists can use the system to search for features in large datasets and to diagnose the output from numerical simulations and data processing algorithms. Data providers around Europe have adopted GODIVA2 as an INSPIRE-compliant dynamic quick-view system for providing visual access to their data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Much consideration is rightly given to the design of metadata models to describe data. At the other end of the data-delivery spectrum much thought has also been given to the design of geospatial delivery interfaces such as the Open Geospatial Consortium standards, Web Coverage Service (WCS), Web Map Server and Web Feature Service (WFS). Our recent experience with the Climate Science Modelling Language shows that an implementation gap exists where many challenges remain unsolved. To bridge this gap requires transposing information and data from one world view of geospatial climate data to another. Some of the issues include: the loss of information in mapping to a common information model, the need to create ‘views’ onto file-based storage, and the need to map onto an appropriate delivery interface (as with the choice between WFS and WCS for feature types with coverage-valued properties). Here we summarise the approaches we have taken in facing up to these problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe ncWMS, an implementation of the Open Geospatial Consortium’s Web Map Service (WMS) specification for multidimensional gridded environmental data. ncWMS can read data in a large number of common scientific data formats – notably the NetCDF format with the Climate and Forecast conventions – then efficiently generate map imagery in thousands of different coordinate reference systems. It is designed to require minimal configuration from the system administrator and, when used in conjunction with a suitable client tool, provides end users with an interactive means for visualizing data without the need to download large files or interpret complex metadata. It is also used as a “bridging” tool providing interoperability between the environmental science community and users of geographic information systems. ncWMS implements a number of extensions to the WMS standard in order to fulfil some common scientific requirements, including the ability to generate plots representing timeseries and vertical sections. We discuss these extensions and their impact upon present and future interoperability. We discuss the conceptual mapping between the WMS data model and the data models used by gridded data formats, highlighting areas in which the mapping is incomplete or ambiguous. We discuss the architecture of the system and particular technical innovations of note, including the algorithms used for fast data reading and image generation. ncWMS has been widely adopted within the environmental data community and we discuss some of the ways in which the software is integrated within data infrastructures and portals.