106 resultados para Measuring scale development


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: There is increased interest in developing training in cognitive behaviour therapy (CBT) with children and young people. However, the assessment of clinical competence has relied upon the use of measures such as the Cognitive Therapy Scale-Revised (CTSR: Blackburn et al., 2001) which has been validated to assess competence with adults. The appropriateness of this measure to assess competence when working with children and young people has been questioned. Aim: This paper describes the development and initial evaluation of the Cognitive Behaviour Therapy Scale for Children and Young People (CBTSCYP) developed specifically to assess competence in CBT with children and young people. Method: A cross section of child CBT practitioners (n = 61) were consulted to establish face validity. Internal reliability, convergent validity and discriminative ability were assessed in two studies. In the first, 12 assessors independently rated a single video using both the Cognitive Behaviour Therapy Scale for Children and Young People (CBTS-CYP) and Cognitive Therapy Scale-Revised (CTS-Revised: Blackburn et al., 2001). In the second, 48 different recordings of CBT undertaken with children and young people were rated on both the CBTS-CYP and CTS-R. Results: Face validity and internal reliability of the CBTS-CYP were high, and convergent validity with the CTS-R was good. The CBTS-CYP compared well with the CTSR in discriminative ability. Conclusion: The CBTS-CYP provides an appropriate way of assessing competence in using CBT with children and young people. Further work is required to assess robustness with younger children and the impact of group training in reducing interrater variations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using experiments with an atmospheric general circulation model, the climate impacts of a basin-scale warming or cooling of the North Atlantic Ocean are investigated. Multidecadal fluctuations with this pattern were observed during the twentieth century, and similar variations--but with larger amplitude--are believed to have occurred in the more distant past. It is found that in all seasons the response to warming the North Atlantic is strongest, in the sense of highest signal-to-noise ratio, in the Tropics. However there is a large seasonal cycle in the climate impacts. The strongest response is found in boreal summer and is associated with suppressed precipitation and elevated temperatures over the lower-latitude parts of North and South America. In August­-September-­October there is a significant reduction in the vertical shear in the main development region for Atlantic hurricanes. In winter and spring, temperature anomalies over land in the extratropics are governed by dynamical changes in circulation rather than simply reflecting a thermodynamic response to the warming or cooling of the ocean. The tropical climate response is primarily forced by the tropical SST anomalies, and the major features are in line with simple models of the tropical circulation response to diabatic heating anomalies. The extratropical climate response is influenced both by tropical and higher-latitude SST anomalies and exhibits nonlinear sensitivity to the sign of the SST forcing. Comparisons with multidecadal changes in sea level pressure observed in the twentieth century support the conclusion that the impact of North Atlantic SST change is most important in summer, but also suggest a significant influence in lower latitudes in autumn and winter. Significant climate impacts are not restricted to the Atlantic basin, implying that the Atlantic Ocean could be an important driver of global decadal variability. The strongest remote impacts are found to occur in the tropical Pacific region in June­-August and September­-November. Surface anomalies in this region have the potential to excite coupled ocean­atmosphere feedbacks, which are likely to play an important role in shaping the ultimate climate response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical studies of surface ocean fronts forced by inhomogeneous buoyancy loss show nonhydrostatic convective plumes coexisting with baroclinic eddies. The character of the vertical overturning depends sensitively on the treatment of the vertical momentum equation in the model. It is less well known how the frontal evolution over scales of O(10 km) is affected by these dynamics. Here, we compare highly resolved numerical experiments using nonhydrostatic and hydrostatic models and the convective-adjustment parametrization. The impact of nonhydrostatic processes on average cross-frontal transfer is weak compared to the effect of the O(1 km) scale baroclinic motions. For water-mass distribution and formation rate nonhydrostatic dynamics have similar influence to the baroclinic eddies although adequate resolution of the gradients in forcing fluxes is more important. The overall implication is that including nonhydrostatic surface frontal dynamics in ocean general circulation models will have only a minor effect on scales of O(1 km) and greater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ≈3,450-million-year-old Strelley Pool Formation in Western Australia contains a reef-like assembly of laminated sedimentary accretion structures (stromatolites) that have macroscale characteristics suggestive of biological influence. However, direct microscale evidence of biology—namely, organic microbial remains or biosedimentary fabrics—has to date eluded discovery in the extensively-recrystallized rocks. Recently-identified outcrops with relatively good textural preservation record microscale evidence of primary sedimentary processes, including some that indicate probable microbial mat formation. Furthermore, we find relict fabrics and organic layers that covary with stromatolite morphology, linking morphologic diversity to changes in sedimentation, seafloor mineral precipitation, and inferred microbial mat development. Thus, the most direct and compelling signatures of life in the Strelley Pool Formation are those observed at the microscopic scale. By examining spatiotemporal changes in microscale characteristics it is possible not only to recognize the presence of probable microbial mats during stromatolite development, but also to infer aspects of the biological inputs to stromatolite morphogenesis. The persistence of an inferred biological signal through changing environmental circumstances and stromatolite types indicates that benthic microbial populations adapted to shifting environmental conditions in early oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Problem structuring methods or PSMs are widely applied across a range of variable but generally small-scale organizational contexts. However, it has been argued that they are seen and experienced less often in areas of wide ranging and highly complex human activity-specifically those relating to sustainability, environment, democracy and conflict (or SEDC). In an attempt to plan, track and influence human activity in SEDC contexts, the authors in this paper make the theoretical case for a PSM, derived from various existing approaches. They show how it could make a contribution in a specific practical context-within sustainable coastal development projects around the Mediterranean which have utilized systemic and prospective sustainability analysis or, as it is now known, Imagine. The latter is itself a PSM but one which is 'bounded' within the limits of the project to help deliver the required 'deliverables' set out in the project blueprint. The authors argue that sustainable development projects would benefit from a deconstruction of process by those engaged in the project and suggest one approach that could be taken-a breakout from a project-bounded PSM to an analysis that embraces the project itself. The paper begins with an introduction to the sustainable development context and literature and then goes on to illustrate the issues by grounding the debate within a set of projects facilitated by Blue Plan for Mediterranean coastal zones. The paper goes on to show how the analytical framework could be applied and what insights might be generated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing can potentially provide information useful in improving pollution transport modelling in agricultural catchments. Realisation of this potential will depend on the availability of the raw data, development of information extraction techniques, and the impact of the assimilation of the derived information into models. High spatial resolution hyperspectral imagery of a farm near Hereford, UK is analysed. A technique is described to automatically identify the soil and vegetation endmembers within a field, enabling vegetation fractional cover estimation. The aerially-acquired laser altimetry is used to produce digital elevation models of the site. At the subfield scale the hypothesis that higher resolution topography will make a substantial difference to contaminant transport is tested using the AGricultural Non-Point Source (AGNPS) model. Slope aspect and direction information are extracted from the topography at different resolutions to study the effects on soil erosion, deposition, runoff and nutrient losses. Field-scale models are often used to model drainage water, nitrate and runoff/sediment loss, but the demanding input data requirements make scaling up to catchment level difficult. By determining the input range of spatial variables gathered from EO data, and comparing the response of models to the range of variation measured, the critical model inputs can be identified. Response surfaces to variation in these inputs constrain uncertainty in model predictions and are presented. Although optical earth observation analysis can provide fractional vegetation cover, cloud cover and semi-random weather patterns can hinder data acquisition in Northern Europe. A Spring and Autumn cloud cover analysis is carried out over seven UK sites close to agricultural districts, using historic satellite image metadata, climate modelling and historic ground weather observations. Results are assessed in terms of probability of acquisition probability and implications for future earth observation missions. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetically modified (GM) crops and sustainable development remain the foci of much media attention, especially given current concerns about a global food crisis. However, whilst the latter is embraced with enthusiasm by almost all groups, GM crops generate very mixed views. Some countries have welcomed GM, but others, notably those in Europe, adopt a cautious stance. This article aims to review the contribution that GM crops can make to agricultural sustainability in the developing world. Following brief reviews of both issues and their linkages, notably the pros and cons of GM cotton as a contributory factor in sustainability, a number of case studies from resourcepoor cotton farmers in Makhathini Flats, South Africa, is presented for a six-year period. Data on expenditure, productivity and income indicate that Bacillus thuringiensis (Bt) cotton is advantageous because it reduces costs, for example, of pesticides, and increases income, and the indications are that those benefits continued over at least the six years covered by the studies. There are repercussions of the additional income in the households; debts are reduced and money is invested in children's education and in the farms. However, in the general GM debate, the results show that GM crops are not miracle products which alleviate poverty at a stroke, but nor is there evidence that they will cause the scale of environmental damage associated with indiscriminate pesticide use. Indeed, for some GM antagonists, perhaps even the majority, such debates are irrelevant – the transfer of genes between species is unnatural and unethical. For them, GM crops will never be acceptable despite the evidence and pressure to increase world food production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6. Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two ongoing projects at ESSC that involve the development of new techniques for extracting information from airborne LiDAR data and combining this information with environmental models will be discussed. The first project in conjunction with Bristol University is aiming to improve 2-D river flood flow models by using remote sensing to provide distributed data for model calibration and validation. Airborne LiDAR can provide such models with a dense and accurate floodplain topography together with vegetation heights for parameterisation of model friction. The vegetation height data can be used to specify a friction factor at each node of a model’s finite element mesh. A LiDAR range image segmenter has been developed which converts a LiDAR image into separate raster maps of surface topography and vegetation height for use in the model. Satellite and airborne SAR data have been used to measure flood extent remotely in order to validate the modelled flood extent. Methods have also been developed for improving the models by decomposing the model’s finite element mesh to reflect floodplain features such as hedges and trees having different frictional properties to their surroundings. Originally developed for rural floodplains, the segmenter is currently being extended to provide DEMs and friction parameter maps for urban floods, by fusing the LiDAR data with digital map data. The second project is concerned with the extraction of tidal channel networks from LiDAR. These networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt-marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. A semi-automatic technique has been developed to extract networks from LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low level algorithms first extract channel fragments based mainly on image properties then a high level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of high throughput techniques ('chip' technology) for measurement of gene expression and gene polymorphisms (genomics), and techniques for measuring global protein expression (proteomics) and metabolite profile (metabolomics) are revolutionising life science research, including research in human nutrition. In particular, the ability to undertake large-scale genotyping and to identify gene polymorphisms that determine risk of chronic disease (candidate genes) could enable definition of an individual's risk at an early age. However, the search for candidate genes has proven to be more complex, and their identification more elusive, than previously thought. This is largely due to the fact that much of the variability in risk results from interactions between the genome and environmental exposures. Whilst the former is now very well defined via the Human Genome Project, the latter (e.g. diet, toxins, physical activity) are poorly characterised, resulting in inability to account for their confounding effects in most large-scale candidate gene studies. The polygenic nature of most chronic diseases offers further complexity, requiring very large studies to disentangle relatively weak impacts of large numbers of potential 'risk' genes. The efficacy of diet as a preventative strategy could also be considerably increased by better information concerning gene polymorphisms that determine variability in responsiveness to specific diet and nutrient changes. Much of the limited available data are based on retrospective genotyping using stored samples from previously conducted intervention trials. Prospective studies are now needed to provide data that can be used as the basis for provision of individualised dietary advice and development of food products that optimise disease prevention. Application of the new technologies in nutrition research offers considerable potential for development of new knowledge and could greatly advance the role of diet as a preventative disease strategy in the 21st century. Given the potential economic and social benefits offered, funding for research in this area needs greater recognition, and a stronger strategic focus, than is presently the case. Application of genomics in human health offers considerable ethical and societal as well as scientific challenges. Economic determinants of health care provision are more likely to resolve such issues than scientific developments or altruistic concerns for human health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The field site network (FSN) plays a central role in conducting joint research within all Assessing Large-scale Risks for biodiversity with tested Methods (ALARM) modules and provides a mechanism for integrating research on different topics in ALARM on the same site for measuring multiple impacts on biodiversity. The network covers most European climates and biogeographic regions, from Mediterranean through central European and boreal to subarctic. The project links databases with the European-wide field site network FSN, including geographic information system (GIS)-based information to characterise the test location for ALARM researchers for joint on-site research. Maps are provided in a standardised way and merged with other site-specific information. The application of GIS for these field sites and the information management promotes the use of the FSN for research and to disseminate the results. We conclude that ALARM FSN sites together with other research sites in Europe jointly could be used as a future backbone for research proposals

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The World Bank, United Nations and UK Department for International Development (DfID) have spearheaded a recent global drive to regularize artisanal and small-scale mining (ASM), and provide assistance to its predominantly impoverished participants. To date, millions of dollars have been pledged toward the design of industry-specific policies and regulations; implementation of mechanized equipment; extension; and the launch of alternative livelihood (AL) programmes aimed at diversifying local economies. Much of this funding, however, has failed to facilitate marked improvements, and in many cases, has exacerbated problems. This paper argues that a poor understanding of artisanal, mine-community dynamics and operators’ needs has, in a number of cases, led to the design and implementation of inappropriate industry support schemes and interventions. The discussion focuses upon experiences from sub-Saharan Africa, where ASM is in the most rudimentary of states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well established that crop production is inherently vulnerable to variations in the weather and climate. More recently the influence of vegetation on the state of the atmosphere has been recognized. The seasonal growth of crops can influence the atmosphere and have local impacts on the weather, which in turn affects the rate of seasonal crop growth and development. Considering the coupled nature of the crop-climate system, and the fact that a significant proportion of land is devoted to the cultivation of crops, important interactions may be missed when studying crops and the climate system in isolation, particularly in the context of land use and climate change. To represent the two-way interactions between seasonal crop growth and atmospheric variability, we integrate a crop model developed specifically to operate at large spatial scales (General Large Area Model for annual crops) into the land surface component of a global climate model (GCM; HadAM3). In the new coupled crop-climate model, the simulated environment (atmosphere and soil states) influences growth and development of the crop, while simultaneously the temporal variations in crop leaf area and height across its growing season alter the characteristics of the land surface that are important determinants of surface fluxes of heat and moisture, as well as other aspects of the land-surface hydrological cycle. The coupled model realistically simulates the seasonal growth of a summer annual crop in response to the GCM's simulated weather and climate. The model also reproduces the observed relationship between seasonal rainfall and crop yield. The integration of a large-scale single crop model into a GCM, as described here, represents a first step towards the development of fully coupled crop and climate models. Future development priorities and challenges related to coupling crop and climate models are discussed.