61 resultados para Mean field theory
Resumo:
We present evidence that large-scale spatial coherence of 40 Hz oscillations can emerge dynamically in a cortical mean field theory. The simulated synchronization time scale is about 150 ms, which compares well with experimental data on large-scale integration during cognitive tasks. The same model has previously provided consistent descriptions of the human EEG at rest, with tranquilizers, under anesthesia, and during anesthetic-induced epileptic seizures. The emergence of coherent gamma band activity is brought about by changing just one physiological parameter until cortex becomes marginally unstable for a small range of wavelengths. This suggests for future study a model of dynamic computation at the edge of cortical stability.
Resumo:
Anesthetic and analgesic agents act through a diverse range of pharmacological mechanisms. Existing empirical data clearly shows that such "microscopic" pharmacological diversity is reflected in their "macroscopic" effects on the human electroencephalogram (EEG). Based on a detailed mesoscopic neural field model we theoretically posit that anesthetic induced EEG activity is due to selective parametric changes in synaptic efficacy and dynamics. Specifically, on the basis of physiologically constrained modeling, it is speculated that the selective modification of inhibitory or excitatory synaptic activity may differentially effect the EEG spectrum. Such results emphasize the importance of neural field theories of brain electrical activity for elucidating the principles whereby pharmacological agents effect the EEG. Such insights will contribute to improved methods for monitoring depth of anesthesia using the EEG.
Resumo:
Changes to the electroencephalogram (EEG) observed during general anesthesia are modeled with a physiological mean field theory of electrocortical activity. To this end a parametrization of the postsynaptic impulse response is introduced which takes into account pharmacological effects of anesthetic agents on neuronal ligand-gated ionic channels. Parameter sets for this improved theory are then identified which respect known anatomical constraints and predict mean firing rates and power spectra typically encountered in human subjects. Through parallelized simulations of the eight nonlinear, two-dimensional partial differential equations on a grid representing an entire human cortex, it is demonstrated that linear approximations are sufficient for the prediction of a range of quantitative EEG variables. More than 70 000 plausible parameter sets are finally selected and subjected to a simulated induction with the stereotypical inhaled general anesthetic isoflurane. Thereby 86 parameter sets are identified that exhibit a strong “biphasic” rise in total power, a feature often observed in experiments. A sensitivity study suggests that this “biphasic” behavior is distinguishable even at low agent concentrations. Finally, our results are briefly compared with previous work by other groups and an outlook on future fits to experimental data is provided.
Resumo:
The magnetization properties of aggregated ferrofluids are calculated by combining the chain formation model developed by Zubarev with the modified mean-field theory. Using moderate assumptions for the inter- and intrachain interactions we obtain expressions for the magnetization and initial susceptibility. When comparing the results of our theory to molecular dynamics simulations of the same model we find that at large dipolar couplings (lambda>3) the chain formation model appears to give better predictions than other analytical approaches. This supports the idea that chain formation is an important structural ingredient of strongly interacting dipolar particles.
Resumo:
This paper investigates finite-stretching corrections to the classical Milner-Witten-Cates theory for semi-dilute polymer brushes in a good solvent. The dominant correction to the free energy originates from an entropic repulsion caused by the impenetrability of the grafting surface, which produces a depletion of segments extending a distance $\mu \propto L^{-1}$ from the substrate, where $L$ is the classical brush height. The next most important correction is associated with the translational entropy of the chain ends, which creates the well-known tail where a small population of chains extend beyond the classical brush height by a distance $\xi \propto L^{-1/3}$. The validity of these corrections is confirmed by quantitative comparison with numerical self-consistent field theory.
Resumo:
We investigate the ability of an applied electric field to convert the morphology of a diblock-copolymer thin film from a monolayer of spherical domains embedded in the matrix to cylindrical domains that penetrate through the matrix. As expected, the applied field increases the relative stability of cylindrical domains, while simultaneously reducing the energy barrier that impedes the transition to cylinders. The effectiveness of the field is enhanced by a large dielectric contrast between the two block-copolymer components, particularly when the low-dielectric contrast component forms the matrix. Furthermore, the energy barrier is minimized by selecting sphere-forming diblock copolymers that are as compositionally symmetric as possible. Our calculations, which are the most quantitatively reliable to date, are performed using a numerically precise spectral algorithm based on self-consistent-field theory supplemented with an exact treatment for linear dielectric materials.
Resumo:
We investigate thin films of cylinder-forming diblock copolymer confined between electrically charged parallel plates, using self-consistent-field theory ( SCFT) combined with an exact treatment for linear dielectric materials. Our study focuses on the competition between the surface interactions, which tend to orient cylinder domains parallel to the plates, and the electric field, which favors a perpendicular orientation. The effect of the electric field on the relative stability of the competing morphologies is demonstrated with equilibrium phase diagrams, calculated with the aid of a weak-field approximation. As hoped, modest electric fields are shown to have a significant stabilizing effect on perpendicular cylinders, particularly for thicker films. Our improved SCFT-based treatment removes most of the approximations implemented by previous approaches, thereby managing to resolve outstanding qualitative inconsistencies among different approximation schemes.
Resumo:
We examine the stability of lamellar stacks in the presence of an electric field, E-0, applied normal to the lamellae. Calculations are performed with self-consistent field theory (SCFT) supplemented by an exact treatment of the electrostatic energy for linear dielectric materials. The calculations identify a critical electric field, E-0*, beyond which the lamellar stack becomes unstable with respect to undulations. This E-0* rapidly decreases towards zero as the number of lamellae in the stack diverges. Our quantitative predictions for E-0* are consistent with previous experimental measurements by Xu and co-workers.
Resumo:
Using self-consistent field theory (SCFT), we investigate the morphologies formed by a melt brush of AB diblock copolymers grafted to a flat substrate by their B ends. In addition to a laterally uniform morphology, SCFT predicts three ordered morphologies exhibiting different periodic patterns at the air surface: a hexagonal array of A-rich dots, an alternating sequence of A- and B-rich stripes, and a hexagonal pattern of B-rich dots. When the phase diagram of the tethered film is plotted as a function of A/B incompatibility, $\chi N$, and diblock composition, $f$, it resembles the bulk phase diagram with the periodic phases converging to a mean-field critical point at weak segregation. The periodic-phase region in the phase diagram shrinks with increasing grafting density and expands when the air surface acquires an affinity for the grafted B blocks.
Resumo:
The phase diagram for an AB diblock copolymer melt with polydisperse A blocks and monodisperse B blocks is evaluated using lattice-based Monte Carlo simulations. Experiments on this system have shown that the A-block polydispersity shifts the order-order transitions (OOTs) towards higher A-monomer content, while the order-disorder transition (ODT) moves towards higher temperatures when the A blocks form the minority domains and lower temperatures when the A blocks form the matrix. Although self-consistent field theory (SCFT) correctly accounts for the change in the OOTs, it incorrectly predicts the ODT to shift towards higher temperatures at all diblock copolymer compositions. In contrast, our simulations predict the correct shifts for both the OOTs and the ODT. This implies that polydispersity amplifies the fluctuation-induced correction to the mean-field ODT, which we attribute to a reduction in packing frustration. Consistent with this explanation, polydispersity is found to enhance the stability of the perforated-lamellar phase.
Resumo:
This study examines the numerical accuracy, computational cost, and memory requirements of self-consistent field theory (SCFT) calculations when the diffusion equations are solved with various pseudo-spectral methods and the mean field equations are iterated with Anderson mixing. The different methods are tested on the triply-periodic gyroid and spherical phases of a diblock-copolymer melt over a range of intermediate segregations. Anderson mixing is found to be somewhat less effective than when combined with the full-spectral method, but it nevertheless functions admirably well provided that a large number of histories is used. Of the different pseudo-spectral algorithms, the 4th-order one of Ranjan, Qin and Morse performs best, although not quite as efficiently as the full-spectral method.
First order k-th moment finite element analysis of nonlinear operator equations with stochastic data
Resumo:
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.
Resumo:
We consider a three dimensional system consisting of a large number of small spherical particles, distributed in a range of sizes and heights (with uniform distribution in the horizontal direction). Particles move vertically at a size-dependent terminal velocity. They are either allowed to merge whenever they cross or there is a size ratio criterion enforced to account for collision efficiency. Such a system may be described, in mean field approximation, by the Smoluchowski kinetic equation with a differential sedimentation kernel. We obtain self-similar steady-state and time-dependent solutions to the kinetic equation, using methods borrowed from weak turbulence theory. Analytical results are compared with direct numerical simulations (DNS) of moving and merging particles, and a good agreement is found.
Resumo:
The role of the tensor terms in the Skyrme interaction is studied for their effect in dynamic calculations where non-zero contributions to the mean-field may arise, even when the starting nucleus, or nuclei are even-even and have no active time-odd potentials in the ground state. We study collisions in the test-bed 16O-16O system, and give a qualitative analysis of the behaviour of the time-odd tensor-kinetic density, which only appears in the mean field Hamiltonian in the presence of the tensor force. We find an axial excitation of this density is induced by a collision.
Resumo:
The effect of A-block polydispersity on the phase behavior of AB diblock copolymer melts is examined using a complete self-consistent field theory treatment that allows for fractionation of the parent molecular-weight distribution. In addition to observing the established shift in phase boundaries, we find the emergence of significant two-phase coexistence regions causing, for instance, the disappearance of the complex phase window. Furthermore, we find evidence that polydispersity relieves packing frustration, which will reduce the tendency for long-range order.