36 resultados para Mature seeds
Resumo:
Question: What is the value of using Rhinanthus minor in grassland restoration and can restrictions on its establishment be overcome? Location: England (United Kingdom). Methods: Two experiments were established to determine the efficacy of inoculating R. minor on a suite of four agriculturally improved grasslands and the efficacy of using R. minor in grassland restoration. In Experiment 1, the effect of herbicide gap creation on the establishment and persistence of R. minor in grasslands ranging in productivity was investigated with respect to sward management. In Exp. 2, R. minor was sown at 1000 seeds/m(2) in conjunction with a standard meadow mix over a randomized plot design into Lolium perenne grassland of moderate productivity. The treatment of scarification was investigated as a treatment to promote R. minor. Results: Gap size had a significant role in the establishment and performance of R. minor, especially the 30 cm diameter gaps (Exp. 1). However, R. minor failed to establish long-term persistent populations in all of the agriculturally improved grasslands. In Exp. 2, establishment of R. minor was increased by scarification and its presence was associated with a significant increase in Shannon diversity and the number of sown and unsown species. Values of grass above-ground biomass were significantly lower in plots sown with R. minor, but values of total above-ground biomass (including R. minor) and forb biomass (not including R. minor) were not affected. Conclusions: The value of introducing R. minor into species-poor grassland to increase diversity has been demonstrated, but successful establishment was dependent on grassland type. The scope for using R. minor in grassland restoration schemes is therefore conditional, although establishment can be enhanced through disturbance such as sward scarification.
Resumo:
There is a strong desire to exploit transcriptomics data from model species for the genetic improvement of non-model crops. Here, we use gene expression profiles from the commercial model Pinus taeda to identify candidate genes implicated in juvenile-mature wood transition in the non-model relative, P. sylvestris. Re-analysis of 'public domain' SAGE data from xylem tissues of P. taeda revealed 283 mature-abundant and 396 juvenile-abundant tags (P < 0.01), of which 70 and 137, respectively matched to genes with known function. Based on sequence similarity, we then isolated 16 putative homologues of genes that in P. taeda exhibited widest divergence in expression between juvenile and mature samples. Candidate expression levels in P. sylvestris were almost invariably differential between juvenile and mature woody tissue samples among two cohorts of five trees collected from the same seed source and selected for genetic uniformity by genetic distance analysis. However, the direction of differential expression was not always consistent with that described in the original P. taeda SAGE data. Correlation was observed between gene expression and juvenile-mature wood anatomical characteristics by OPLS analysis. Four candidates (alpha-tubulin, porin MIP1, lipid transfer protein and aquaporin like protein) apparently had greatest influence on the wood traits measured. Speculative function of these genes in relation to juvenile-mature wood transition is briefly explored. Thus, we demonstrate the feasibility of exploiting SAGE data from a model species to identify consistently differentially expressed candidates in a related non-model species.
Resumo:
A study was undertaken to determine whether cocoa swollen shoot virus is transmitted by seeds, to improve the robustness of quarantine procedures for international exchange and long term conservation of cocoa germplasm. PCR/capillary electrophoresis, using cocoa swollen shoot virus primers designed from the most conserved regions of the six published cocoa genome sequences, allowed the detection of cocoa swollen shoot virus in all the component parts of cocoa seeds from cocoa swollen shoot virus-infected trees. PCR/capillary electrophoresis revealed the presence of cocoa swollen shoot virus in seedlings raised from seeds obtained from cocoa swollen shoot virus-infected trees. The high frequency with which the virus was transmitted through the seedlings suggested that cocoa swollen shoot virus is transmitted by seeds. This has serious implications for cocoa germplasm conservation and distribution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in insect cells using baculovirus vectors leads to the abundant production of virus-like particles (VLPs) that represent the immature form of the virus. When Gag-Pol is included, however, VLP production is abolished, a result attributed to premature protease activation degrading the intracellular pool of Gag precursor before particle assembly can occur. As large-scale synthesis of mature noninfectious VLPs would be useful, we have sought to control HIV protease activity in insect cells to give a balance of Gag and Gag-Pol that is compatible with mature particle formation. We show here that intermediate levels of protease activity in insect cells can be attained through site-directed mutagenesis of the protease and through antiprotease drug treatment. However, despite Gag cleavage patterns that mimicked those seen in mammalian cells, VLP synthesis exhibited an essentially all-or-none response in which VLP synthesis occurred but was immature or failed completely. Our data are consistent with a requirement for specific cellular factors in addition to the correct ratio of Gag and Gag-Pol for assembly of mature retrovirus particles in heterologous cell types. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Phytase (myo-inositol-1,2,3,4,5,6-hexakisphosphate phosphohydrolase, EC 3.1.3.26), which catalyses the step-wise hydrolysis of phytic acid, was purified from cotyledons of dormant Corylus avellana L. seeds. The enzyme was separated from the major soluble acid phosphatase by successive (NH4)2SO4 precipitation, gel filtration and cation exchange chromatography resulting in a 300-fold purification and yield of 7.5%. The native enzyme positively interacted with Concanavalin A suggesting that it is putatively glycosylated. After size exclusion chromatography and SDS–PAGE it was found to be a monomeric protein with molecular mass 72±2.5 kDa. The hazel enzyme exhibited optimum activity for phytic acid hydrolysis at pH 5 and, like other phytases, had broad substrate specificity. It exhibited the lowest Km (162 μM) and highest specificity constant (Vmax/Km) for phytic acid, indicating that this is the preferred in vivo substrate. It required no metal ion as a co-factor, while inorganic phosphate and fluoride competitively inhibited enzymic activity (Ki=407 μM and Ki=205 μM, respectively).
Resumo:
Botrytis cinerea occurred commonly on cultivated Primula ×polyantha seed. The fungus was mostly on the outside of the seed but sometimes was present within the seed. The fungus frequently caused disease at maturity in plants grown from the seed, demonstrated by growing plants in a filtered airflow, isolated from other possible sources of infection. Young, commercially produced P. ×polyantha plants frequently had symptomless B. cinerea infections spread throughout the plants for up to 3 months, with symptoms appearing only at flowering. Single genetic individuals of B. cinerea, as determined by DNA fingerprinting, often were dispersed widely throughout an apparently healthy plant. Plants could, however, contain more than one isolate.
Resumo:
Fourteen sesquiterpenes, three monoterpenes and one diterpene natural product have been isolated from the seeds of Artemisia annua. The possible biogenesis of some of these natural products are discussed by reference to recently reported experimental results for the autoxidation of dihydroartemisinic acid and other terpenoids from Artemisia annua. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Both airborne spores of Rhynchosporium secalis and seed infection have been implied as major sources of primary inoculum for barley leaf blotch (scald) epidemics in fields without previous history of barley cropping. However, little is known about their relative importance in the onset of disease. Results from both quantitative real-time PCR and visual assessments indicated that seed infection was the main source of inoculum in the field trial conducted in this study. Glasshouse studies established that the pathogen can be transmitted from infected seeds into roots, shoots and leaves without causing symptoms. Plants in the field trial remained symptomless for approximately four months before symptoms were observed in the crop. Covering the crop during part of the growing season was shown to prevent pathogen growth, despite the use of infected seed, indicating that changes in the physiological condition of the plant and/or environmental conditions may trigger disease development. However, once the disease appeared in the field it quickly became uniform throughout the cropping area. Only small amounts of R. secalis DNA were measured in 24 h spore-trap tape samples using PCR. Inoculum levels equivalent to spore concentrations between 30 and 60 spores per m3 of air were only detected on three occasions during the growing season. The temporal pattern and level of detection of R. secalis DNA in spore tape samples indicated that airborne inoculum was limited and most likely represented rain-splashed conidia rather than putative ascospores.
Resumo:
The distribution of nutrients and assimilates in different organs and tissues is in a constant state of flux throughout the growth and development of a plant. At key stages during the life cycle profound changes occur, and perhaps one of the most critical of these is during seed filling. By restricting the competition for reserves in Arabidopsis plants, the ability to manipulate seed size, seed weight, or seed content has been explored. Removal of secondary inflorescences and lateral branches resulted in a stimulation of elongation of the primary inflorescence and an increase in the distance between siliques. The pruning treatment also led to the development of longer and larger siliques that contained fewer, bigger seeds. This seems to be a consequence of a reduction in the number of ovules that develop and an increase in the fatty acid content of the seeds that mature. The data show that shoot architecture could have a substantial impact on the partitioning of reserves between vegetative and reproductive tissues and could be an important trait for selection in rapid phenotyping screens to optimize crop performance.
Resumo:
Sulforaphane, a naturally occurring cancer chemopreventive, is the hydrolysis product of glucoraphanin, the main glucosinolate in broccoli. The hydrolysis requires myrosinase isoenzyme to be present in sufficient activity; however processing leads to its denaturation and hence reduced hydrolysis. In this study, the effect of adding mustard seeds, which has a more resilient isoform of myrosinase, to processed broccoli was investigated with a view to intensify the formation of sulforaphane. Thermal inactivation of myrosinase from both broccoli and mustard seeds was studied. Thermal degradation of broccoli glucoraphanin was investigated in addition to the effects of thermal processing on the formation of sulforaphane and sulforaphane nitrile. Limited thermal degradation of glucoraphanin (less than 12 %) was observed when broccoli was placed in vacuum sealed bag (sous vide) and cooked in a water bath at 100 ºC for 8 and 12 min. Boiling broccoli in water prevented the formation of any significant levels of sulforaphane due to inactivated myrosinase. However, addition of powdered mustard seeds to the heat processed broccoli significantly increased the formation of sulforaphane.
Resumo:
Protein tyrosine phosphorylation in angiosperms has been implicated in various physiological processes, including seed development and germination. In conifers, the role of tyrosine phosphorylation and the mechanisms of its regulation are yet to be investigated. In this study, we examined the profile of protein tyrosine phosphorylation in Scots pine seeds at different stages of germination. We detected extensive protein tyrosine phosphorylation in extracts from Scots pine (Pinus sylvestris L.) dormant seeds. In addition, the pattern of tyrosine phosphorylation was found to change significantly during seed germination, especially at earlier stages of post-imbibition which coincides with the initiation of cell division, and during the period of intensive elongation of hypocotyls. To better understand the molecular mechanisms of phosphotyrosine signaling, we employed affinity purification and mass spectrometry for the identification of pTyr-binding proteins from the extracts of Scots pine seedlings. Using this approach, we purified two proteins of 10 and 43 kDa, which interacted specifically with pTyr-Sepharose and were identified by mass spectrometry as P. sylvestris defensin 1 (PsDef1) and aldose 1-epimerase (EC:5.1.3.3), respectively. Additionally, we demonstrated that both endogenous and recombinant PsDef1 specifically interact with pTyr-Sepharose, but not Tyr-beads. As the affinity purification approach did not reveal the presence of proteins with known pTyr binding domains (SH2, PTB and C2), we suggest that plants may have evolved a different mode of pTyr recognition, which yet remains to be uncovered.