17 resultados para Mast cell tumor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bis-[(p-methoxybenzyl)cyclopentadienyl] titanium dichloride, better known as Titanocene Y, is a newly synthesized transition metal-based anticancer drug. We studied the antitumor activity of Titanocene Y with concentrations of 2.1, 21 and 210 mu mol/l against a freshly explanted human breast cancer, using an in-vitro soft agar cloning system. The sensitivity against Titanocene Y was highly remarkable in the breast cancer tumor in the full concentration range. Titanocene Y showed cell death induction at 2.1 mu mol/l, well comparable to cisplatin, given at a concentration of 1.0 mu mol/l. A further preclinical development of Titanocene Y was warranted and therefore an MCF-7 human breast cancer xenograft nonobese diabetic/severe combined immunodeficient mouse model was used. Titanocene Y was given for 21 days at 30 mg/kg/ day (75% of the maximum tolerable dose of Titanocene Y), which resulted in the reduction of the tumor volume to around one-third, whereas no mouse was lost because of the surprisingly low toxicity of Titanocene Y.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-alpha) is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs) have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. RESULTS: Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation. Moreover, we demonstrate IKK-alpha/beta-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU) incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-kappaB) as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-kappaB super-repressor IkappaB-AA1. Pharmacological blockade of IkappaB ubiquitin ligase activity led to comparable decreases in NF-kappaB activity and proliferation. In addition, IKK-beta gene product knock-down via siRNA led to diminished NF-kappaB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFbeta-activated kinase 1 (TAK-1) is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial for future regenerative and anti-tumor medicine. CONCLUSION: TNF-mediated activation of IKK-beta resulted in activation of NF-kappaB and was followed by up-regulation of the bona-fide target gene cyclin D1. Activation of the canonical NF-kappaB pathway resulted in strongly increased proliferation of NSCs.