80 resultados para Marriage separation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction of americium(III), curium(III), and the lanthanides(III) from nitric acid by 6,6'- bis (5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]triazin-3-yl)-[2,2'] bipyridine (CyMe4-BTBP) has been studied. Since the extraction kinetics were slow, N,N'-dimethyl-N,N'-dioctyl-2-(2-hexyloxy-ethyl)malonamide (DMDOHEMA) was added as a phase transfer reagent. With a mixture of 0.01 M CyMe4-BTBP + 0.25 M DMDOHEMA in n -octanol, extraction equilibrium was reached within 5 min of mixing. At a nitric acid concentration of 1 M, an americium(III) distribution ratio of approx. 10 was achieved. Americium(III)/lanthanide(III) separation factors between 50 (dysprosium) and 1500 (lanthanum) were obtained. Whereas americium(III) and curium(III) were extracted as disolvates, the stoichiometries of the lanthanide(III) complexes were not identified unambiguously, owing to the presence of DMDOHEMA. In the absence of DMDOHEMA, both americium(III) and europium(III) were extracted as disolvates. Back-extraction with 0.1 M nitric acid was thermodynamically possible but rather slow. Using a buffered glycolate solution of pH=4, an americium(III) distribution ratio of 0.01 was obtained within 5 min of mixing. There was no evidence of degradation of the extractant, for example, the extraction performance of CyMe4-BTBP during hydrolylsis with 1 M nitric acid did not change over a two month contact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A future goal in nuclear fuel reprocessing is the conversion or transmutation of the long-lived radioisotopes of minor actinides, such as americium, into short-lived isotopes by irradiation with neutrons. In order to achieve this transmutation, it is necessary to separate the minor actinides(III), [An(Ill)], from the lanthanides(III), [Ln(Ill)], by solvent extraction (partitioning), because the lanthanides absorb neutrons too effectively and hence limit neutron capture by the transmutable actinides. Partitioning using ligands containing only carbon, hydrogen, nitrogen and oxygen atoms is desirable because they are completely incinerable and thus the final volume of waste is minimised [1]. Nitric acid media will be used in the extraction experiments because it is envisaged that the An(III)/Ln(III) separation process could take place after the PUREX process. There is no doubt that the correct design of a molecule that is capable of acting as a ligand or extraction reagent is required for the effective separation of metal ions such as actinides(III) from lanthanides. Recent attention has been directed towards heterocyclic ligands with for the preferential separation of the minor actinides. Although such molecules have a rich chemistry, this is only now becoming sufficiently well understood in relation to the partitioning process [2]. The molecules shown in Figures I and 2 will be the principal focus of this study. Although the examples chosen here are used rather specific, the guidelines can be extended to other areas such as the separation of precious metals [3].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coordination chemistry of iso-butyramide based ligands such as: (C3H7CON)-C-i((C3H7)-C-i)(2), (C3H7CON)-C-i(C4H9)(2) and (C3H7CON)-C-i((C4H9)-C-i)(2) with [UO2(NO3)(2) center dot 6H(2)O], [UO2(OO)(2) center dot 2H(2)O] {where OO = C4H3SCOCHCCCF3 (TTA), C6H5COCHCOCF3 (BTA) and C6H5COCHCOC6H5 (DBM)), [Th(NO3)(4) center dot 6H(2)O] and [La(NO3)(3) center dot 6H(2)O] has been evaluated. Structures for the compounds [UO2(NO3)(2)CC3H7CON{(C4H9)-C-i}(2))(2)] and [UO2(C6H5COCHCOC6H5)(2)((C3H7CON)-C-i{(C3H7)-C-i)(2))] have been determined by single crystal X-ray diffraction methods. Preliminary separation studies from nitric acid medium using the amide (C3H7CON)-C-i((C4H9)-C-i)(2) with U(VI), Th(IV) and La(Ill) ions showed the selective precipitation of uranyl ion from the mixture. Thermal study of the compound [UO2(NO3)(2)((C3H7CON)-C-i((C4H9)-C-i)(2))(2)] in air revealed that the ligands can be destroyed completely on incineration. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The co-adsorption of CO and O on the unreconstructed (1 x 1) phase of Ir {100} was examined by low energy electron diffraction (LEED) and temperature programmed desorption (TPD). When CO is adsorbed at 188 K onto the Ir{100} surface precovered with 0.5 ML O, a mixed c(4 x 2)-(2O + CO) overlayer is formed. All CO is oxidised upon heating and desorbs as CO2 in three distinct stages at 230 K, 330 K and 430 K in a 2:1:2 ratio. The excess oxygen left on the surface after all CO has reacted forms an overlayer with a LEED pattern with p(2 x 10) periodicity. This overlayer consists of stripes with a local p(2 x 1)-O arrangement of oxygen atoms separated by stripes of uncovered It. When CO is adsorbed at 300 K onto the surface precovered with 0.5 ML O an apparent (2 x 2) LEED pattern is observed. LEED IV analysis reveals that this pattern is a superposition of diffraction patterns from islands of c(2 x 2)-CO and p(2 x 1)-O structures on the surface. Heating this co-adsorbed overlayer leads to the desorption of CO, in two stages at 330 K and 430 K; the excess CO (0.1 ML) desorbs at 590 K. LEED IV structural analysis of the mixed c(4 x 2) O and CO overlayer shows that both the CO molecules and the O atoms occupy bridge sites. The O atoms show significant lateral displacements of 0.14 angstrom away from the CO molecules; the C-O bond is slightly expanded with respect to the gas phase (1.19 angstrom); the modifications of the Ir substrate with respect to the bulk-terminated surface are very small. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoinduced Fe-to-bpy charge transfer in [{Cp(dppe)Fe}-(mu-C CC N){Re(CO)(3)(bpy)}]PF6 has been observed by ps-TRIR spectroscopy, supported by UV-Vis/IR spectroelectrochemistry and DFT calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of research on magnetic nanoparticles has focused on optical, electrical, and magnetic storage areas. Recently, the application of magnetic nanoparticles as magnetically separable nanovehicles for chemical or biological species has become an area of intensive research but with rather different challenging criteria that are yet to be addressed. For example, the enhancement of intrinsically weak magnetic properties, avoidance of magnetic interactions among particles, and improvement of the stability of the nanoparticles remain key issues. Here, it is demonstrated using sequential nanochemistry preparation techniques that exchange-coupled nanomagnets, such as FePt-Fe3Pt or FePt-Fe3O4 with dramatically enhanced magnetization, can be placed inside a silica nanosphere. The advantages of enhanced magnetization and the provision of protective coating and anchored sites on the silica shell surface render these new coated particles suitable for use in magnetic separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic microporous membranes with functional groups covalently attached were used to selectively separate beta-lactoglobulin, BSA, and alpha-lactalbumin from rennet whey. The selectivity and membrane performance of strong (quaternary ammonium) and weak (diethylamine) ion-exchange membranes were studied using breakthrough curves, measurement of binding capacity, and protein composition of the elution fraction to determine the binding behavior of each membrane. When the weak and strong anion exchange membranes were saturated with whey, they were both selective primarily for beta-lactoglobulin with less than 1% of the eluate consisting of alpha-lactalbumin or BSA. The binding capacity of a pure alpha-lactoglobulin solution was in excess of 1.5 mg/cm(2) of membrane. This binding capacity was reduced to approximately 1.2 mg/cm(2) when using a rennet whey solution (pH 6.4). This reduction in protein binding capacity can be explained by both the competitive effects of other whey proteins and the effect of ions present in whey. Using binary solution breakthrough curves and rennet whey breakthrough curves, it was shown that alpha-lactalbumin and BSA were displaced from the strong and weak anion exchange membranes by beta-lactoglobulin. Finally, the effect of ionic strength on the binding capacity of individual proteins for each membrane was determined by comparing model protein solutions in milk permeate (pH 6.4) and a 10 mM sodium phosphate buffer (pH 6.4). Binding capacities of beta-lactoglobulin, alpha-lactalbumin, and BSA in milk permeate were reduced by as much as 50%. This reduction in capacity coupled with the low binding capacity of current ion exchange membranes are 2 serious considerations for selectively separating complex and concentrated protein solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal gas aphrons (CGA), which are surfactant stabilised microbubbles, have been previously applied for the recovery of proteins from model mixtures and a few studies have demonstrated the potential of these dispersions for the selective recovery of proteins from complex mixtures. However there is a lack of understanding of the mechanism of separation and forces governing the selectivity of the separation. In this paper a mechanistic study is carried out to determine the main factors and forces influencing the selectivity of separation of whey proteins with CGA generated from ionic surfactants. Two different separation strategies were followed: (i) separation of lactoferrin and lactoperoxidase by anionic CGA generated from a solution of sodium bis-(2-ethyl hexyl) sulfosuccinate (AOT); (ii) separation of beta-lactoglobulin by cationic CGA generated from a solution of cetyltrimethylammonium bromide (CTAB). Separation results indicate that electrostatic interactions are the main forces determining the selectivity however these could not completely explain the selectivities obtained following both strategies. Protein-surfactant interactions were studied by measuring the zeta potential changes on individual proteins upon addition of surfactant and at varying pH. Interestingly strongest electrostatic interactions were measured at those pH and surfactant to protein mass ratios which were optimum for protein separation. Effect of surfactant on protein conformation was determined by measuring the change in fluorescence intensity upon addition of surfactant at varying pH. Differences in the fluorescence patterns were detected among proteins which were correlated to differences in their conformational features which could in turn explain their different separation behaviour. The effect of conformation on selectivity was further proven by experiments in which conformational changes were induced by pre-treatment of whey (heating) and by storage at 4 degrees C. Overall it can be concluded that separation of proteins by ionic CGA is driven mainly by electrostatic interactions however conformational features will finally determine the selectivity of the separation with competitive adsorption having also an effect. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective separation of whey proteins was studied using colloidal gas aphrons generated from the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). From the titration curves obtained by zeta potential measurements of individual whey proteins, it was expected to selectively adsorb the major whey proteins, i.e., bovine serum albumin, alpha-lactalbumin, and beta-lactoglobulin to the aphrons and elute the remaining proteins (lactoferrin and lactoperoxidase) in the liquid phase. A number of process parameters including pH, ionic strength, and mass ratio of surfactant to protein (M-CTAB/M-TP) were varied in order to evaluate their effect on protein separation. Under optimum conditions (2 mmol/l CTAB, M-CTAB/M-TP = 0.26-0.35, pH 8, and ionic strength = 0.018 mol/l), 80-90% beta-lactoglobulin was removed from the liquid phase as a precipitate, while about 75% lactoferrin and lactoperoxidase, 80% bovine serum albumin, 95% immunoglobulin, and 65% alpha-lactalbumin were recovered in the liquid fraction. Mechanistic studies using zeta potential measurements and fluorescence spectroscopy proved that electrostatic interactions modulate only partially the selectivity of protein separation, as proteins with similar surface charges do not separate to the same extent between the two phases. The selectivity of recovery of beta-lactoglobulin probably occurs in two steps: the first being the selective interaction of the protein with opposite-charged surfactant molecules by means of electrostatic interactions, which leads to denaturation of the protein and subsequent formation and precipitation of the CTAB-beta-lactoglobulin complex. This is followed by the separation of CTAB-beta-lactoglobulin aggregates from the bulk liquid by flotation in the aphron phase. In this way, CGAs act as carriers which facilitate the removal of protein precipitate. (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is directed to the advanced parallel Quasi Monte Carlo (QMC) methods for realistic image synthesis. We propose and consider a new QMC approach for solving the rendering equation with uniform separation. First, we apply the symmetry property for uniform separation of the hemispherical integration domain into 24 equal sub-domains of solid angles, subtended by orthogonal spherical triangles with fixed vertices and computable parameters. Uniform separation allows to apply parallel sampling scheme for numerical integration. Finally, we apply the stratified QMC integration method for solving the rendering equation. The superiority our QMC approach is proved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-energy and photoemission electron microscopy enables the determination of facet planes of polycrystalline surfaces and the study of their chemical composition at the sub-m scale. Using these techniques the early oxidation stages of nickel were studied. After exposing the surface to 20 L of oxygen at 373 K a uniform layer of chemisorbed oxygen was found on all facets. After oxygen exposure at 473–673 K, small NiO crystallites are formed on all facets but not in the vicinity of all grain boundaries. The crystallites are separated by areas of bare Ni without significant oxygen coverage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free-flow isoelectric focusing (IEF) is a gel-free method for separating proteins based on their isoelectric point (pl) in a liquid environment and in the presence of carrier ampholytes. this method has been used with the RotoforTM cell at the preparative scale to fractionate proteins from samples containing several hundred milligrams of protein; see the refeences listed in Bio-Rad bulletin 3152. the MicroRotofor cell applies the same method to much sl=maller protein samples without dilution, separating and recoverng milligram quantities of protein in a total volume of about 2 ml.