22 resultados para Magmatic accretion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the theory and observations related to the "superhump" precession of eccentric accretion discs in close binary systems. We agree with earlier work, although for different reasons, that the discrepancy between observation and dynamical theory implies that the effect of pressure in the disc cannot be neglected. We extend earlier work that investigates this effect to include the correct expression for the radius at which resonant orbits occur. Using analytic expressions for the accretion disc structure, we derive a relationship between the period excess and mass ratio with the pressure effects included. This is compared to the observed data, recently derived results for detailed integration of the disc equations and the equivalent empirically derived relations and used to predict values for the mass ratio based on measured values of the period excess for 88 systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the observed K velocities and periodicities of AM CVn can be reconciled given a mass ratio q~0.22 and a secondary star with a modest magnetic field of surface strength B~1 T. We see that the new mass ratio implies that the secondary is most likely semidegenerate. The effect of the field on the accretion disc structure is examined. The theory of precessing discs and resonant orbits is generalized to encompass higher order resonances than 3:2 and shown to retain consistency with the new mass ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effect of a secondary star magnetic field on the accretion disc dynamics of dwarf novae. Simulations have been carried out with a particle code and a dipolar magnetic field structure. The magnetic field acts to remove angular momentum from the disc material, increasing the inward mass flow. This makes the accretion disc more centrally condensed, causing a reduction in the recurrence time for dwarf nova outbursts. We have produced Doppler tomograms and light curves which may be compared with observations. These tomograms are significantly different from those produced in the absence of a magnetic field on the secondary. We derive an upper limit to the magnetic moment of the secondary star in UGem of mu_2<2x10^32 A m^2. The magnetic truncation of the accretion disc produces resonance phenomena similar to those seen in the superoutbursts of SUUMa systems. While these have not been observed for systems like UGem, observations of the SUUMa systems provide us with a useful diagnostic of the disc-field interaction. We are able to place an upper limit on the magnetic moment of the secondary in ZCha of mu_2<1x10^30 A m^2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present N-body simulations of accretion discs about young stellar objects (YSOs). The simulation includes the presence of a magnetic loop structure on the central star which interacts with the particles by means of a magnetic drag force. We find that an equilibrium spin rate is achieved when the corotation radius coincides with the edge of the loop. This spin rate is consistent with observed values for TTauri stars, being an order of magnitude less than the breakup value. The material ejected from the system by the rotating loop has properties consistent with the observed molecular outflows, given the presence of a suitable containing cavity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analysis of Rapid Keck Spectroscopy of the CVs AM Her (polar) and SS Cyg (dwarf nova). We decompose the spectra into constant and variable components and identify different types of variability in AM Her with different characteristic timescales. The variable flickering component of the accretion disc flux and the observational characteristics of a small flare in SS Cyg are isolated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subgrid-scale spatial variability in cloud water content can be described by a parameter f called the fractional standard deviation. This is equal to the standard deviation of the cloud water content divided by the mean. This parameter is an input to schemes that calculate the impact of subgrid-scale cloud inhomogeneity on gridbox-mean radiative fluxes and microphysical process rates. A new regime-dependent parametrization of the spatial variability of cloud water content is derived from CloudSat observations of ice clouds. In addition to the dependencies on horizontal and vertical resolution and cloud fraction included in previous parametrizations, the new parametrization includes an explicit dependence on cloud type. The new parametrization is then implemented in the Global Atmosphere 6 (GA6) configuration of the Met Office Unified Model and used to model the effects of subgrid variability of both ice and liquid water content on radiative fluxes and autoconversion and accretion rates in three 20-year atmosphere-only climate simulations. These simulations show the impact of the new regime-dependent parametrization on diagnostic radiation calculations, interactive radiation calculations and both interactive radiation calculations and in a new warm microphysics scheme. The control simulation uses a globally constant f value of 0.75 to model the effect of cloud water content variability on radiative fluxes. The use of the new regime-dependent parametrization in the model results in a global mean which is higher than the control's fixed value and a global distribution of f which is closer to CloudSat observations. When the new regime-dependent parametrization is used in radiative transfer calculations only, the magnitudes of short-wave and long-wave top of atmosphere cloud radiative forcing are reduced, increasing the existing global mean biases in the control. When also applied in a new warm microphysics scheme, the short-wave global mean bias is reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial variability of liquid cloud water content and rainwater content is analysed from three different observational platforms: in situ measurements from research aircraft, land-based remote sensing techniques using radar and lidar, and spaceborne remote sensing from CloudSat. The variance is found to increase with spatial scale, but also depends strongly on the cloud or rain fraction regime, with overcast regions containing less variability than broken cloud fields. This variability is shown to lead to large biases, up to a factor of 4, in both the autoconversion and accretion rates estimated at a model grid scale of ≈40 km by a typical microphysical parametrization using in-cloud mean values. A parametrization for the subgrid variability of liquid cloud and rainwater content is developed, based on the observations, which varies with both the grid scale and cloud or rain fraction, and is applicable for all model grid scales. It is then shown that if this parametrization of the variability is analytically incorporated into the autoconversion and accretion rate calculations, the bias is significantly reduced.