68 resultados para MESH
Resumo:
This article describes a number of velocity-based moving mesh numerical methods formultidimensional nonlinear time-dependent partial differential equations (PDEs). It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation. Finite element algorithms are derived for both mass-conserving and non mass-conserving problems, and results shown for a number of multidimensional nonlinear test problems, including the second order porous medium equation and the fourth order thin film equation as well as a two-phase problem. Further applications and extensions are referenced.
Resumo:
The ECMWF operational grid point model (with a resolution of 1.875° of latitude and longitude) and its limited area version (with a resolution of !0.47° of latitude and longitude) with boundary values from the global model have been used to study the simulation of the typhoon Tip. The fine-mesh model was capable of simulating the main structural features of the typhoon and predicting a fall in central pressure of 60 mb in 3 days. The structure of the forecast typhoon, with a warm core (maximum potential temperature anomaly 17 K). intense swirling wind (maximum 55 m s-1 at 850 mb) and spiralling precipitation patterns is characteristic of a tropical cyclone. Comparison with the lower resolution forecast shows that the horizontal resolution is a determining factor in predicting not only the structure and intensity but even the movement of these vortices. However, an accurate and refined initial analysis is considered to be a prerequisite for a correct forecast of this phenomenon.
Resumo:
Details are given of a boundary-fitted mesh generation method for use in modelling free surface flow and water quality. A numerical method has been developed for generating conformal meshes for curvilinear polygonal and multiply-connected regions. The method is based on the Cauchy-Riemann conditions for the analytic function and is able to map a curvilinear polygonal region directly onto a regular polygonal region, with horizontal and vertical sides. A set of equations have been derived for determining the lengths of these sides and the least-squares method has been used in solving the equations. Several numerical examples are presented to illustrate the method.
Resumo:
Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications
Resumo:
A key step in many numerical schemes for time-dependent partial differential equations with moving boundaries is to rescale the problem to a fixed numerical mesh. An alternative approach is to use a moving mesh that can be adapted to focus on specific features of the model. In this paper we present and discuss two different velocity-based moving mesh methods applied to a two-phase model of avascular tumour growth formulated by Breward et al. (2002) J. Math. Biol. 45(2), 125-152. Each method has one moving node which tracks the moving boundary. The first moving mesh method uses a mesh velocity proportional to the boundary velocity. The second moving mesh method uses local conservation of volume fraction of cells (masses). Our results demonstrate that these moving mesh methods produce accurate results, offering higher resolution where desired whilst preserving the balance of fluxes and sources in the governing equations.
Resumo:
This paper describes a fast and reliable method for redistributing a computational mesh in three dimensions which can generate a complex three dimensional mesh without any problems due to mesh tangling. The method relies on a three dimensional implementation of the parabolic Monge–Ampère (PMA) technique, for finding an optimally transported mesh. The method for implementing PMA is described in detail and applied to both static and dynamic mesh redistribution problems, studying both the convergence and the computational cost of the algorithm. The algorithm is applied to a series of problems of increasing complexity. In particular very regular meshes are generated to resolve real meteorological features (derived from a weather forecasting model covering the UK area) in grids with over 2×107 degrees of freedom. The PMA method computes these grids in times commensurate with those required for operational weather forecasting.
Resumo:
In this invited article the authors present an evaluative report on the development of the MESHGuides project (http://www.meshguides.org/). MESHGuides’ objective is to provide education with an international knowledge management system. MESHGuides were conceived as research summaries for supporting teachers’ in developing evidence-based practice. Their aim is to enhance teachers’ capacity to engage actively with research in their own classrooms. The original thinking for MESH arose from the work of UK-based academics Professor Marilyn Leask and Dr Sarah Younie in response to a desire, which has recently gathered momentum in the UK, for the development of a more research-informed teaching profession and for the establishment of an on-line platform to support evidence-based practice (DfE, 2015; Leask and Younie 2001; OECD 2009). The focus of this article is on how the MESHGuides project was conceived and structured, the technical systems supporting it and the practical reality for academics and teachers of composing and using MESHGuides. The project and the guides are in the early stages of development, and discussion indicates future possibilities for more global engagement with this knowledge management system.
Resumo:
An equation of Monge-Ampère type has, for the first time, been solved numerically on the surface of the sphere in order to generate optimally transported (OT) meshes, equidistributed with respect to a monitor function. Optimal transport generates meshes that keep the same connectivity as the original mesh, making them suitable for r-adaptive simulations, in which the equations of motion can be solved in a moving frame of reference in order to avoid mapping the solution between old and new meshes and to avoid load balancing problems on parallel computers. The semi-implicit solution of the Monge-Ampère type equation involves a new linearisation of the Hessian term, and exponential maps are used to map from old to new meshes on the sphere. The determinant of the Hessian is evaluated as the change in volume between old and new mesh cells, rather than using numerical approximations to the gradients. OT meshes are generated to compare with centroidal Voronoi tesselations on the sphere and are found to have advantages and disadvantages; OT equidistribution is more accurate, the number of iterations to convergence is independent of the mesh size, face skewness is reduced and the connectivity does not change. However anisotropy is higher and the OT meshes are non-orthogonal. It is shown that optimal transport on the sphere leads to meshes that do not tangle. However, tangling can be introduced by numerical errors in calculating the gradient of the mesh potential. Methods for alleviating this problem are explored. Finally, OT meshes are generated using observed precipitation as a monitor function, in order to demonstrate the potential power of the technique.
Resumo:
Flood modelling of urban areas is still at an early stage, partly because until recently topographic data of sufficiently high resolution and accuracy have been lacking in urban areas. However, Digital Surface Models (DSMs) generated from airborne scanning laser altimetry (LiDAR) having sub-metre spatial resolution have now become available, and these are able to represent the complexities of urban topography. The paper describes the development of a LiDAR post-processor for urban flood modelling based on the fusion of LiDAR and digital map data. The map data are used in conjunction with LiDAR data to identify different object types in urban areas, though pattern recognition techniques are also employed. Post-processing produces a Digital Terrain Model (DTM) for use as model bathymetry, and also a friction parameter map for use in estimating spatially-distributed friction coefficients. In vegetated areas, friction is estimated from LiDAR-derived vegetation height, and (unlike most vegetation removal software) the method copes with short vegetation less than ~1m high, which may occupy a substantial fraction of even an urban floodplain. The DTM and friction parameter map may also be used to help to generate an unstructured mesh of a vegetated urban floodplain for use by a 2D finite element model. The mesh is decomposed to reflect floodplain features having different frictional properties to their surroundings, including urban features such as buildings and roads as well as taller vegetation features such as trees and hedges. This allows a more accurate estimation of local friction. The method produces a substantial node density due to the small dimensions of many urban features.
Resumo:
We consider the problem of scattering of a time-harmonic acoustic incident plane wave by a sound soft convex polygon. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the computational cost required to achieve a prescribed level of accuracy grows linearly with respect to the frequency of the incident wave. Recently Chandler–Wilde and Langdon proposed a novel Galerkin boundary element method for this problem for which, by incorporating the products of plane wave basis functions with piecewise polynomials supported on a graded mesh into the approximation space, they were able to demonstrate that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Here we propose a related collocation method, using the same approximation space, for which we demonstrate via numerical experiments a convergence rate identical to that achieved with the Galerkin scheme, but with a substantially reduced computational cost.
Resumo:
In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.
Resumo:
The and RT0 finite element schemes are among the most promising low order elements for use in unstructured mesh marine and lake models. They are both free of spurious elevation modes, have good dispersive properties and have a relatively low computational cost. In this paper, we derive both finite element schemes in the same unified framework and discuss their respective qualities in terms of conservation, consistency, propagation factor and convergence rate. We also highlight the impact that the local variables placement can have on the model solution. The main conclusion that we can draw is that the choice between elements is highly application dependent. We suggest that the element is better suited to purely hydrodynamical applications while the RT0 element might perform better for hydrological applications that require scalar transport calculations.
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
We consider the imposition of Dirichlet boundary conditions in the finite element modelling of moving boundary problems in one and two dimensions for which the total mass is prescribed. A modification of the standard linear finite element test space allows the boundary conditions to be imposed strongly whilst simultaneously conserving a discrete mass. The validity of the technique is assessed for a specific moving mesh finite element method, although the approach is more general. Numerical comparisons are carried out for mass-conserving solutions of the porous medium equation with Dirichlet boundary conditions and for a moving boundary problem with a source term and time-varying mass.
Resumo:
The performance of a 2D numerical model of flood hydraulics is tested for a major event in Carlisle, UK, in 2005. This event is associated with a unique data set, with GPS surveyed wrack lines and flood extent surveyed 3 weeks after the flood. The Simple Finite Volume (SFV) model is used to solve the 2D Saint-Venant equations over an unstructured mesh of 30000 elements representing channel and floodplain, and allowing detailed hydraulics of flow around bridge piers and other influential features to be represented. The SFV model is also used to corroborate flows recorded for the event at two gauging stations. Calibration of Manning's n is performed with a two stage strategy, with channel values determined by calibration of the gauging station models, and floodplain values determined by optimising the fit between model results and observed water levels and flood extent for the 2005 event. RMS error for the calibrated model compared with surveyed water levels is ~±0.4m, the same order of magnitude as the estimated error in the survey data. The study demonstrates the ability of unstructured mesh hydraulic models to represent important hydraulic processes across a range of scales, with potential applications to flood risk management.