279 resultados para MERIDIONAL OVERTURNING CIRCULATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the sensitivity of the climate system to volcanic aerosol forcing in the third climate configuration of the Met Office Unified Model (HadCM3). The main test case was based on the 1880s when there were several volcanic eruptions, the well-known Krakatau being the largest. These eruptions increased atmospheric aerosol concentrations and induced a period of global cooling surface temperatures. In this study, an ensemble of HadCM3 has been integrated with the standard set of radiative forcings and aerosols from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations, from 1860 to present. A second ensemble removes the volcanic aerosols from 1880 to 1899. The all-forcings ensemble shows an attributable 1.2-Sv (1 Sv ≡ 106 m3 s−1) increase in the Atlantic meridional overturning circulation (AMOC) at 45°N—with a 0.04-PW increase in meridional heat transport at 40°N and increased northern Atlantic SSTs—starting around 1894, approximately 11 years after the first eruption, and lasting a further 10 years at least. The mechanisms responsible are traced to the Arctic, with suppression of the global water cycle (high-latitude precipitation), which leads to an increase in upper-level Arctic and Greenland Sea salinities. This then leads to increased convection in the Greenland–Iceland–Norwegian (GIN) Seas, enhanced Denmark Strait overflows, and AMOC changes with density anomalies traceable southward along the western Atlantic boundary. The authors investigate whether a similar response to the Pinatubo eruption in 1991 could still be ongoing, but do not find strong evidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matei et al. (Reports, 6 January 2012, p. 76) claim to show skillful multiyear predictions of the Atlantic Meridional Overturning Circulation (AMOC). However, these claims are not justified, primarily because the predictions of AMOC transport do not outperform simple reference forecasts based on climatological annual cycles. Accordingly, there is no justification for the “confident” prediction of a stable AMOC through 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to a substantial weakening of the Atlantic Meridional Overturning Circulation (AMOC)— from a coupled ocean–atmosphere general circulation model experiment—significant changes in the interannual variability are found over the tropical Atlantic, characterized by an increase of variance (by ~150 %) in boreal late spring-early summer and a decrease of variance (by ~60 %) in boreal autumn. This study focuses on understanding physical mechanisms responsible for these changes in interannual variability in the tropical Atlantic. It demonstrates that the increase of variability in spring is a consequence of an increase in the variance of the El Niño-Southern Oscillation, which has a large impact on the tropical Atlantic via anomalous surface heat fluxes. Winter El Niño (La Niña) affects the eastern equatorial Atlantic by decreasing (increasing) cloud cover and surface wind speed which is associated with anomalous downward (upward) short wave radiation and reduced (enhanced) upward latent heat fluxes, creating anomalous positive (negative) sea surface temperature (SST) anomalies over the region from winter to spring. On the other hand, the decrease of SST variance in autumn is due to a deeper mean thermocline which weakens the impact of the thermocline movement on SST variation. The comparison between the model results and observations is not straightforward owing to the influence of model biases and the lack of a major MOC weakening event in the instrumental record. However, it is argued that the basic physical mechanisms found in the model simulations are likely to be robust and therefore have relevance to understanding tropical Atlantic variability in the real world, perhaps with modified seasonality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reversibility of the Atlantic meridional overturning circulation (AMOC) is investigated in multi-model experiments using global climate models (GCMs) where CO2 concentrations are increased by 1 or 2 % per annum to 2× or 4× preindustrial conditions. After a period of stabilisation the CO2 is decreased back to preindustrial conditions. In most experiments when the CO2 decreases, the AMOC recovers before becoming anomalously strong. This "overshoot" is up to an extra 18.2Sv or 104 % of its preindustrial strength, and the period with an anomalously strong AMOC can last for several hundred years. The magnitude of this overshoot is shown to be related to the build up of salinity in the subtropical Atlantic during the previous period of high CO2 levels. The magnitude of this build up is partly related to anthropogenic changes in the hydrological cycle. The mechanisms linking the subtropical salinity increase to the subsequent overshoot are analysed, supporting the relationship found. This understanding is used to explain differences seen in some models and scenarios. In one experiment there is no overshoot because there is little salinity build up, partly as a result of model differences in the hydrological cycle response to increased CO2 levels and partly because of a less aggressive scenario. Another experiment has a delayed overshoot, possibly as a result of a very weak AMOC in that GCM when CO2 is high. This study identifies aspects of overshoot behaviour that are robust across a multi-model and multi-scenario ensemble, and those that differ between experiments. These results could inform an assessment of the real-world AMOC response to decreasing CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RAPID-MOCHA array has observed the Atlantic Meridional overturning circulation (AMOC) at 26.5°N since 2004. During 2009/2010, there was a transient 30% weakening of the AMOC driven by anomalies in geostrophic and Ekman transports. Here, we use simulations based on the Met Office Forecast Ocean Assimilation Model (FOAM) to diagnose the relative importance of atmospheric forcings and internal ocean dynamics in driving the anomalous geostrophic circulation of 2009/10. Data assimilating experiments with FOAM accurately reproduce the mean strength and depth of the AMOC at 26.5°N. In addition, agreement between simulated and observed stream functions in the deep ocean is improved when we calculate the AMOC using a method that approximates the RAPID observations. The main features of the geostrophic circulation anomaly are captured by an ensemble of simulations without data-assimilation. These model results suggest that the atmosphere played a dominant role in driving recent interannual variability of the AMOC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to the role of the Atlantic meridional overturning circulation (AMOC) in ocean heat transport, AMOC variability is thought to play a role in climate variability on a wide range of time scales. This paper focuses on the potential role of the AMOC in climate variability on decadal time scales. Coupled and ocean-only general circulation models run in idealized geometries are utilized to study the relationships between decadal AMOC and buoyancy variability and determine whether the AMOC plays an active role in setting sea surface temperature on decadal time scales.DecadalAMOC variability is related to changes in the buoyancy field along the western boundary according to the thermal wind relation. Buoyancy anomalies originate in the upper ocean of the subpolar gyre and travel westward as baroclinic Rossby waves. When the buoyancy anomalies strike the western boundary, they are advected southward by the deep western boundary current, leading to latitudinally coherent AMOC variability. The AMOC is observed to respond passively to decadal buoyancy anomalies: although variability of the AMOC leads to meridional ocean heat transport anomalies, these transports are not responsible for creating the buoyancy anomalies in the subpolar gyre that drive AMOC variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many previous studies have shown that unforced climate model simulations exhibit decadal-scale fluctuations in the Atlantic meridional overturning circulation (AMOC), and that this variability can have impacts on surface climate fields. However, the robustness of these surface fingerprints across different models is less clear. Furthermore, with the potential for coupled feedbacks that may amplify or damp the response, it is not known whether the associated climate signals are linearly related to the strength of the AMOC changes, or if the fluctuation events exhibit nonlinear behaviour with respect to their strength or polarity. To explore these questions, we introduce an objective and flexible method for identifying the largest natural AMOC fluctuation events in multicentennial/multimillennial simulations of a variety of coupled climate models. The characteristics of the events are explored, including their magnitude, meridional coherence and spatial structure, as well as links with ocean heat transport and the horizontal circulation. The surface fingerprints in ocean temperature and salinity are examined, and compared with the results of linear regression analysis. It is found that the regressions generally provide a good indication of the surface changes associated with the largest AMOC events. However, there are some exceptions, including a nonlinear change in the atmospheric pressure signal, particularly at high latitudes, in HadCM3. Some asymmetries are also found between the changes associated with positive and negative AMOC events in the same model. Composite analysis suggests that there are signals that are robust across the largest AMOC events in each model, which provides reassurance that the surface changes associated with one particular event will be similar to those expected from regression analysis. However, large differences are found between the AMOC fingerprints in different models, which may hinder the prediction and attribution of such events in reality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the prerequisites for achieving skill in decadal climate prediction is to initialize and predict the circulation in the Atlantic Ocean successfully. The RAPID array measures the Atlantic Meridional Overturning Circulation (MOC) at 26°N. Here we develop a method to include these observations in the Met Office Decadal Prediction System (DePreSys). The proposed method uses covariances of overturning transport anomalies at 26°N with ocean temperature and salinity anomalies throughout the ocean to create the density structure necessary to reproduce the observed transport anomaly. Assimilating transport alone in this way effectively reproduces the observed transport anomalies at 26°N and is better than using basin-wide temperature and salinity observations alone. However, when the transport observations are combined with in situ temperature and salinity observations in the analysis, the transport is not currently reproduced so well. The reasons for this are investigated using pseudo-observations in a twin experiment framework. Sensitivity experiments show that the MOC on monthly time-scales, at least in the HadCM3 model, is modulated by a mechanism where non-local density anomalies appear to be more important for transport variability at 26°N than local density gradients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study explores the decadal potential predictability of the Atlantic Meridional Overturning Circulation (AMOC) as represented in the IPSL-CM5A-LR model, along with the predictability of associated oceanic and atmospheric fields. Using a 1000-year control run, we analyze the prognostic potential predictability (PPP) of the AMOC through ensembles of simulations with perturbed initial conditions. Based on a measure of the ensemble spread, the modelled AMOC has an average predictive skill of 8 years, with some degree of dependence on the AMOC initial state. Diagnostic potential predictability of surface temperature and precipitation is also identified in the control run and compared to the PPP. Both approaches clearly bring out the same regions exhibiting the highest predictive skill. Generally, surface temperature has the highest skill up to 2 decades in the far North Atlantic ocean. There are also weak signals over a few oceanic areas in the tropics and subtropics. Predictability over land is restricted to the coastal areas bordering oceanic predictable regions. Potential predictability at interannual and longer timescales is largely absent for precipitation in spite of weak signals identified mainly in the Nordic Seas. Regions of weak signals show some dependence on AMOC initial state. All the identified regions are closely linked to decadal AMOC fluctuations suggesting that the potential predictability of climate arises from the mechanisms controlling these fluctuations. Evidence for dependence on AMOC initial state also suggests that studying skills from case studies may prove more useful to understand predictability mechanisms than computing average skill from numerous start dates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlantic meridional overturning circulation (AMOC) is an important component of the climate system. Models indicate that the AMOC can be perturbed by freshwater forcing in the North Atlantic. Using an ocean-atmosphere general circulation model, we investigate the dependence of such a perturbation of the AMOC, and the consequent climate change, on the region of freshwater forcing. A wide range of changes in AMOC strength is found after 100 years of freshwater forcing. The largest changes in AMOC strength occur when the regions of deepwater formation in the model are forced directly, although reductions in deepwater formation in one area may be compensated by enhanced formation elsewhere. North Atlantic average surface air temperatures correlate linearly with the AMOC decline, but warming may occur in localised regions, notably over Greenland and where deepwater formation is enhanced. This brings into question the representativeness of temperature changes inferred from Greenland ice-core records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of a rapid collapse in the strength of the Atlantic meridional overturning circulation (AMOC), with associated impacts on climate, has long been recognized. The suggested basis for this risk is the existence of two stable regimes of the AMOC (‘on’ and ‘off’), and such bistable behaviour has been identified in a range of simplified climate models. However, up to now, no state-of-the-art atmosphere-ocean coupled global climate model (AOGCM) has exhibited such behaviour, leading to the interpretation that the AMOC is more stable than simpler models indicate. Here we demonstrate AMOC bistability in the response to freshwater perturbations in the FAMOUS AOGCM - the most complex AOGCM to exhibit such behaviour to date. The results also support recent suggestions that the direction of the net freshwater transport at the southern boundary of the Atlantic by the AMOC may be a useful physical indicator of the existence of bistability. We also present new estimates for this net freshwater transport by the AMOC from a range of ocean reanalyses which suggest that the Atlantic AMOC is currently in a bistable regime, although with large uncertainties. More accurate observational constraints, and an improved physical understanding of this quantity, could help narrow uncertainty in the future evolution of the AMOC and to assess the risk of a rapid AMOC collapse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a global Ocean-Atmosphere General Circulation Model (OAGCM) to show that the major mountain ranges of the world have a significant role in maintenance of the Atlantic Meridional Overturning Circulation (AMOC). A simulation with mountains has a maximum AMOC of 18 Sv (1 Sv=106 m3 s-1) compared with ~0 Sv for a simulation without mountains. Atlantic heat transport at 25N is 1.1 PW with mountains compared to 0.2 PW without. The difference in AMOC is due to major changes in surface heat and freshwater (FW) fluxes over the Atlantic. In the Pacific changed surface fluxes lead to a meridional overturning circulation of 10 Sv. Our results suggest that the effects of mountains on the large-scale atmospheric circulation is to force the ocean towards a state with a vigorous AMOC and with no overturning in the Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An eddy-resolving numerical model of a zonal flow, meant to resemble the Antarctic Circumpolar Current, is described and analyzed using the framework of J. Marshall and T. Radko. In addition to wind and buoyancy forcing at the surface, the model contains a sponge layer at the northern boundary that permits a residual meridional overturning circulation (MOC) to exist at depth. The strength of the residual MOC is diagnosed for different strengths of surface wind stress. It is found that the eddy circulation largely compensates for the changes in Ekman circulation. The extent of the compensation and thus the sensitivity of the MOC to the winds depend on the surface boundary condition. A fixed-heat-flux surface boundary severely limits the ability of the MOC to change. An interactive heat flux leads to greater sensitivity. To explain the MOC sensitivity to the wind strength under the interactive heat flux, transformed Eulerian-mean theory is applied, in which the eddy diffusivity plays a central role in determining the eddy response. A scaling theory for the eddy diffusivity, based on the mechanical energy balance, is developed and tested; the average magnitude of the diffusivity is found to be proportional to the square root of the wind stress. The MOC sensitivity to the winds based on this scaling is compared with the true sensitivity diagnosed from the experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the use of bivariate 3d empirical orthogonal functions (EOFs) in characterising low frequency variability of the Atlantic thermohaline circulation (THC) in the Hadley Centre global climate model, HadCM3. We find that the leading two modes are well correlated with an index of the meridional overturning circulation (MOC) on decadal timescales, with the leading mode alone accounting for 54% of the decadal variance. Episodes of coherent oscillations in the sub-space of the leading EOFs are identified; these episodes are of great interest for the predictability of the THC, and could indicate the existence of different regimes of natural variability. The mechanism identified for the multi-decadal variability is an internal ocean mode, dominated by changes in convection in the Nordic Seas, which lead the changes in the MOC by a few years. Variations in salinity transports from the Arctic and from the North Atlantic are the main feedbacks which control the oscillation. This mode has a weak feedback onto the atmosphere and hence a surface climatic influence. Interestingly, some of these climate impacts lead the changes in the overturning. There are also similarities to observed multi-decadal climate variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tropospheric response to a forced shutdown of the North Atlantic Ocean’s meridional overturning circulation (MOC) is investigated in a coupled ocean–atmosphere GCM [the third climate configuration of the Met Office Unified Model (HadCM3)]. The strength of the boreal winter North Atlantic storm track is significantly increased and penetrates much farther into western Europe. The changes in the storm track are shown to be consistent with the changes in near-surface baroclinicity, which can be linked to changes in surface temperature gradients near regions of sea ice formation and in the open ocean. Changes in the SST of the tropical Atlantic are linked to a strengthening of the subtropical jet to the north, which, combined with the enhanced storm track, leads to a pronounced split in the jet structure over Europe. EOF analysis and stationary box indices methods are used to analyze changes to the North Atlantic Oscillation (NAO). There is no consistent signal of a change in the variability of the NAO, and while the changes in the mean flow project onto the positive NAO phase, they are significantly different from it. However, there is a clear eastward shift of the NAO pattern in the shutdown run, and this potentially has implications for ocean circulation and for the interpretation of proxy paleoclimate records.