37 resultados para Longitudinal Growth Modelling
Resumo:
We have studied growth and estimated recruitment of massive coral colonies at three sites, Kaledupa, Hoga and Sampela, separated by about 1.5 km in the Wakatobi Marine National Park, S.E. Sulawesi, Indonesia. There was significantly higher species richness (P<0.05), coral cover (P<0.05) and rugosity (P<0.01) at Kaledupa than at Sampela. A model for coral reef growth has been developed based on a rational polynomial function, where dx/dt is an index of coral growth with time; W is the variable (for example, coral weight, coral length or coral area), up to the power of n in the numerator and m in the denominator; a1……an and b1…bm are constants. The values for n and m represent the degree of the polynomial, and can relate to the morphology of the coral. The model was used to simulate typical coral growth curves, and tested using published data obtained by weighing coral colonies underwater in reefs on the south-west coast of Curaçao [‘Neth. J. Sea Res. 10 (1976) 285’]. The model proved an accurate fit to the data, and parameters were obtained for a number of coral species. Surface area data was obtained on over 1200 massive corals at three different sites in the Wakatobi Marine National Park, S.E. Sulawesi, Indonesia. The year of an individual's recruitment was calculated from knowledge of the growth rate modified by application of the rational polynomial model. The estimated pattern of recruitment was variable, with little numbers of massive corals settling and growing before 1950 at the heavily used site, Sampela, relative to the reef site with little or no human use, Kaledupa, and the intermediate site, Hoga. There was a significantly greater sedimentation rate at Sampela than at either Kaledupa (P<0.0001) or Hoga (P<0.0005). The relative mean abundance of fish families present at the reef crests at the three sites, determined using digital video photography, did not correlate with sedimentation rates, underwater visibility or lack of large non-branching coral colonies. Radial growth rates of three genera of non-branching corals were significantly lower at Sampela than at Kaledupa or at Hoga, and there was a high correlation (r=0.89) between radial growth rates and underwater visibility. Porites spp. was the most abundant coral over all the sites and at all depths followed by Favites (P<0.04) and Favia spp. (P<0.03). Colony ages of Porites corals were significantly lower at the 5 m reef flat on the Sampela reef than at the same depth on both other reefs (P<0.005). At Sampela, only 2.8% of corals on the 5 m reef crest are of a size to have survived from before 1950. The Scleractinian coral community of Sampela is severely impacted by depositing sediments which can lead to the suffocation of corals, whilst also decreasing light penetration resulting in decreased growth and calcification rates. The net loss of material from Sampela, if not checked, could result in the loss of this protective barrier which would be to the detriment of the sublittoral sand flats and hence the Sampela village.
Resumo:
An unstructured mathematical model is proposed to describe the fermentation kinetics of growth, lactic acid production, pH and sugar consumption by Lactobacillus plantarum as a function of the buffering capacity and initial glucose concentration of the culture media. Initially the experimental data of L plantarum fermentations in synthetic media with different buffering capacity and glucose were fitted to a set of primary models. Later the parameters obtained from these models were used to establish mathematical relationships with the independent variables tested. The models were validated with 6 fermentations of L. plantarum in different cereal-based media. In most cases the proposed models adequately describe the biochemical changes taking place during fermentation and are a promising approach for the formulation of cereal-based probiotic foods. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objectives: To clarify the role of growth monitoring in primary school children, including obesity, and to examine issues that might impact on the effectiveness and cost-effectiveness of such programmes. Data sources: Electronic databases were searched up to July 2005. Experts in the field were also consulted. Review methods: Data extraction and quality assessment were performed on studies meeting the review's inclusion criteria. The performance of growth monitoring to detect disorders of stature and obesity was evaluated against National Screening Committee (NSC) criteria. Results: In the 31 studies that were included in the review, there were no controlled trials of the impact of growth monitoring and no studies of the diagnostic accuracy of different methods for growth monitoring. Analysis of the studies that presented a 'diagnostic yield' of growth monitoring suggested that one-off screening might identify between 1: 545 and 1: 1793 new cases of potentially treatable conditions. Economic modelling suggested that growth monitoring is associated with health improvements [ incremental cost per quality-adjusted life-year (QALY) of pound 9500] and indicated that monitoring was cost-effective 100% of the time over the given probability distributions for a willingness to pay threshold of pound 30,000 per QALY. Studies of obesity focused on the performance of body mass index against measures of body fat. A number of issues relating to human resources required for growth monitoring were identified, but data on attitudes to growth monitoring were extremely sparse. Preliminary findings from economic modelling suggested that primary prevention may be the most cost-effective approach to obesity management, but the model incorporated a great deal of uncertainty. Conclusions: This review has indicated the potential utility and cost-effectiveness of growth monitoring in terms of increased detection of stature-related disorders. It has also pointed strongly to the need for further research. Growth monitoring does not currently meet all NSC criteria. However, it is questionable whether some of these criteria can be meaningfully applied to growth monitoring given that short stature is not a disease in itself, but is used as a marker for a range of pathologies and as an indicator of general health status. Identification of effective interventions for the treatment of obesity is likely to be considered a prerequisite to any move from monitoring to a screening programme designed to identify individual overweight and obese children. Similarly, further long-term studies of the predictors of obesity-related co-morbidities in adulthood are warranted. A cluster randomised trial comparing growth monitoring strategies with no growth monitoring in the general population would most reliably determine the clinical effectiveness of growth monitoring. Studies of diagnostic accuracy, alongside evidence of effective treatment strategies, could provide an alternative approach. In this context, careful consideration would need to be given to target conditions and intervention thresholds. Diagnostic accuracy studies would require long-term follow-up of both short and normal children to determine sensitivity and specificity of growth monitoring.
Resumo:
The development of eutrophication in river systems is poorly understood given the complex relationship between fixed plants, algae, hydrodynamics, water chemistry and solar radiation. However there is a pressing need to understand the relationship between the ecological status of rivers and the controlling environmental factors to help the reasoned implementation of the Water Framework Directive and Catchment Sensitive Farming in the UK. This research aims to create a dynamic, process-based, mathematical in-stream model to simulate the growth and competition of different vegetation types (macrophytes, phytoplankton and benthic algae) in rivers. The model, applied to the River Frome (Dorset, UK), captured well the seasonality of simulated vegetation types (suspended algae, macrophytes, epiphytes, sediment biofilm). Macrophyte results showed that local knowledge is important for explaining unusual changes in biomass. Fixed algae simulations indicated the need for the more detailed representation of various herbivorous grazer groups, however this would increase the model complexity, the number of model parameters and the required observation data to better define the model. The model results also highlighted that simulating only phytoplankton is insufficient in river systems, because the majority of the suspended algae have benthic origin in short retention time rivers. Therefore, there is a need for modelling tools that link the benthic and free-floating habitats.
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling cyanobacterial behaviour in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes, reservoirs and rivers. A new deterministic–mathematical model was developed, which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the major factors that affect the cyanobacterial bloom formation in rivers including light, nutrients and temperature. A parameter sensitivity analysis using a one-at-a-time approach was carried out. There were two objectives of the sensitivity analysis presented in this paper: to identify the key parameters controlling the growth and movement patterns of cyanobacteria and to provide a means for model validation. The result of the analysis suggested that maximum growth rate and day length period were the most significant parameters in determining the population growth and colony depth, respectively.
Resumo:
Remote sensing is the only practicable means to observe snow at large scales. Measurements from passive microwave instruments have been used to derive snow climatology since the late 1970’s, but the algorithms used were limited by the computational power of the era. Simplifications such as the assumption of constant snow properties enabled snow mass to be retrieved from the microwave measurements, but large errors arise from those assumptions, which are still used today. A better approach is to perform retrievals within a data assimilation framework, where a physically-based model of the snow properties can be used to produce the best estimate of the snow cover, in conjunction with multi-sensor observations such as the grain size, surface temperature, and microwave radiation. We have developed an existing snow model, SNOBAL, to incorporate mass and energy transfer of the soil, and to simulate the growth of the snow grains. An evaluation of this model is presented and techniques for the development of new retrieval systems are discussed.
Resumo:
Background Few studies of the effects of postnatal depression on child development have considered the chronicity of depressive symptoms. We investigated whether early postnatal depressive symptoms (PNDS) predicted child developmental outcome independently of later maternal depressive symptoms. Methods In a prospective, longitudinal study, mothers and children were followed-up from birth to 2 years; repeated measures of PNDS were made using the Edinburgh Postnatal Depression Scale (EPDS); child development was assessed using the Bayley Scales II. Multilevel modelling techniques were used to examine the association between 6 week PNDS, and child development, taking subsequent depressive symptoms into account. Results Children of mothers with 6 week PNDS were significantly more likely than children of non-symptomatic mothers to have poor cognitive outcome; however, this association was reduced to trend level when adjusted for later maternal depressive symptoms. Conclusion Effects of early PNDS on infant development may be partly explained by subsequent depressive symptoms.
Resumo:
The increasing demand for ecosystem services, in conjunction with climate change, is expected to signif- icantly alter terrestrial ecosystems. In order to evaluate the sustainability of land and water resources, there is a need for a better understanding of the relationships between crop production, land surface characteristics and the energy and water cycles. These relationships are analysed using the Joint UK Land Environment Simulator (JULES). JULES includes the full hydrological cycle and vegetation effects on the energy, water, and carbon fluxes. However, this model currently only simulates land surface processes in natural ecosystems. An adapted version of JULES for agricultural ecosystems, called JULES-SUCROS has therefore been developed. In addition to overall model improvements, JULES-SUCROS includes a dynamic crop growth structure that fully fits within and builds upon the biogeochemical modelling framework for natural vegetation. Specific agro-ecosystem features such as the development of yield-bearing organs and the phenological cycle from sowing till harvest have been included in the model. This paper describes the structure of JULES-SUCROS and evaluates the fluxes simulated with this model against FLUXNET measurements at 6 European sites. We show that JULES-SUCROS significantly improves the correlation between simulated and observed fluxes over cropland and captures well the spatial and temporal vari- ability of the growth conditions in Europe. Simulations with JULES-SUCROS highlight the importance of vegetation structure and phenology, and the impact they have on land–atmosphere interactions.
Resumo:
High rates of nutrient loading from agricultural and urban development have resulted in surface water eutrophication and groundwater contamination in regions of Ontario. In Lake Simcoe (Ontario, Canada), anthropogenic nutrient contributions have contributed to increased algal growth, low hypolimnetic oxygen concentrations, and impaired fish reproduction. An ambitious programme has been initiated to reduce phosphorus loads to the lake, aiming to achieve at least a 40% reduction in phosphorus loads by 2045. Achievement of this target necessitates effective remediation strategies, which will rely upon an improved understanding of controls on nutrient export from tributaries of Lake Simcoe as well as improved understanding of the importance of phosphorus cycling within the lake. In this paper, we describe a new model structure for the integrated dynamic and process-based model INCA-P, which allows fully-distributed applications, suited to branched river networks. We demonstrate application of this model to the Black River, a tributary of Lake Simcoe, and use INCA-P to simulate the fluxes of P entering the lake system, apportion phosphorus among different sources in the catchment, and explore future scenarios of land-use change and nutrient management to identify high priority sites for implementation of watershed best management practises.
Resumo:
Data assimilation is predominantly used for state estimation; combining observational data with model predictions to produce an updated model state that most accurately approximates the true system state whilst keeping the model parameters fixed. This updated model state is then used to initiate the next model forecast. Even with perfect initial data, inaccurate model parameters will lead to the growth of prediction errors. To generate reliable forecasts we need good estimates of both the current system state and the model parameters. This paper presents research into data assimilation methods for morphodynamic model state and parameter estimation. First, we focus on state estimation and describe implementation of a three dimensional variational(3D-Var) data assimilation scheme in a simple 2D morphodynamic model of Morecambe Bay, UK. The assimilation of observations of bathymetry derived from SAR satellite imagery and a ship-borne survey is shown to significantly improve the predictive capability of the model over a 2 year run. Here, the model parameters are set by manual calibration; this is laborious and is found to produce different parameter values depending on the type and coverage of the validation dataset. The second part of this paper considers the problem of model parameter estimation in more detail. We explain how, by employing the technique of state augmentation, it is possible to use data assimilation to estimate uncertain model parameters concurrently with the model state. This approach removes inefficiencies associated with manual calibration and enables more effective use of observational data. We outline the development of a novel hybrid sequential 3D-Var data assimilation algorithm for joint state-parameter estimation and demonstrate its efficacy using an idealised 1D sediment transport model. The results of this study are extremely positive and suggest that there is great potential for the use of data assimilation-based state-parameter estimation in coastal morphodynamic modelling.
Resumo:
Models of root system growth emerged in the early 1970s, and were based on mathematical representations of root length distribution in soil. The last decade has seen the development of more complex architectural models and the use of computer-intensive approaches to study developmental and environmental processes in greater detail. There is a pressing need for predictive technologies that can integrate root system knowledge, scaling from molecular to ensembles of plants. This paper makes the case for more widespread use of simpler models of root systems based on continuous descriptions of their structure. A new theoretical framework is presented that describes the dynamics of root density distributions as a function of individual root developmental parameters such as rates of lateral root initiation, elongation, mortality, and gravitropsm. The simulations resulting from such equations can be performed most efficiently in discretized domains that deform as a result of growth, and that can be used to model the growth of many interacting root systems. The modelling principles described help to bridge the gap between continuum and architectural approaches, and enhance our understanding of the spatial development of root systems. Our simulations suggest that root systems develop in travelling wave patterns of meristems, revealing order in otherwise spatially complex and heterogeneous systems. Such knowledge should assist physiologists and geneticists to appreciate how meristem dynamics contribute to the pattern of growth and functioning of root systems in the field.
Resumo:
Stereoscopic white-light imaging of a large portion of the inner heliosphere has been used to track interplanetary coronal mass ejections. At large elongations from the Sun, the white-light brightness depends on both the local electron density and the efficiency of the Thomson-scattering process. To quantify the effects of the Thomson-scattering geometry, we study an interplanetary shock using forward magnetohydrodynamic simulation and synthetic white-light imaging. Identifiable as an inclined streak of enhanced brightness in a time–elongation map, the travelling shock can be readily imaged by an observer located within a wide range of longitudes in the ecliptic. Different parts of the shock front contribute to the imaged brightness pattern viewed by observers at different longitudes. Moreover, even for an observer located at a fixed longitude, a different part of the shock front will contribute to the imaged brightness at any given time. The observed brightness within each imaging pixel results from a weighted integral along its corresponding ray-path. It is possible to infer the longitudinal location of the shock from the brightness pattern in an optical sky map, based on the east–west asymmetry in its brightness and degree of polarisation. Therefore, measurement of the interplanetary polarised brightness could significantly reduce the ambiguity in performing three-dimensional reconstruction of local electron density from white-light imaging.
Resumo:
This research examined how motivation (perceived control, intrinsic motivation, and extrinsic motivation), cognitive learning strategies (deep and surface strategies), and intelligence jointly predict long-term growth in students' mathematics achievement over 5 years. Using longitudinal data from six annual waves (Grades 5 through 10; Mage = 11.7 years at baseline; N = 3,530), latent growth curve modeling was employed to analyze growth in achievement. Results showed that the initial level of achievement was strongly related to intelligence, with motivation and cognitive strategies explaining additional variance. In contrast, intelligence had no relation with the growth of achievement over years, whereas motivation and learning strategies were predictors of growth. These findings highlight the importance of motivation and learning strategies in facilitating adolescents' development of mathematical competencies.
Resumo:
Urbanization related alterations to the surface energy balance impact urban warming (‘heat islands’), the growth of the boundary layer, and many other biophysical processes. Traditionally, in situ heat flux measures have been used to quantify such processes, but these typically represent only a small local-scale area within the heterogeneous urban environment. For this reason, remote sensing approaches are very attractive for elucidating more spatially representative information. Here we use hyperspectral imagery from a new airborne sensor, the Operative Modular Imaging Spectrometer (OMIS), along with a survey map and meteorological data, to derive the land cover information and surface parameters required to map spatial variations in turbulent sensible heat flux (QH). The results from two spatially-explicit flux retrieval methods which use contrasting approaches and, to a large degree, different input data are compared for a central urban area of Shanghai, China: (1) the Local-scale Urban Meteorological Parameterization Scheme (LUMPS) and (2) an Aerodynamic Resistance Method (ARM). Sensible heat fluxes are determined at the full 6 m spatial resolution of the OMIS sensor, and at lower resolutions via pixel aggregation and spatial averaging. At the 6 m spatial resolution, the sensible heat flux of rooftop dominated pixels exceeds that of roads, water and vegetated areas, with values peaking at ∼ 350 W m− 2, whilst the storage heat flux is greatest for road dominated pixels (peaking at around 420 W m− 2). We investigate the use of both OMIS-derived land surface temperatures made using a Temperature–Emissivity Separation (TES) approach, and land surface temperatures estimated from air temperature measures. Sensible heat flux differences from the two approaches over the entire 2 × 2 km study area are less than 30 W m− 2, suggesting that methods employing either strategy maybe practica1 when operated using low spatial resolution (e.g. 1 km) data. Due to the differing methodologies, direct comparisons between results obtained with the LUMPS and ARM methods are most sensibly made at reduced spatial scales. At 30 m spatial resolution, both approaches produce similar results, with the smallest difference being less than 15 W m− 2 in mean QH averaged over the entire study area. This is encouraging given the differing architecture and data requirements of the LUMPS and ARM methods. Furthermore, in terms of mean study QH, the results obtained by averaging the original 6 m spatial resolution LUMPS-derived QH values to 30 and 90 m spatial resolution are within ∼ 5 W m− 2 of those derived from averaging the original surface parameter maps prior to input into LUMPS, suggesting that that use of much lower spatial resolution spaceborne imagery data, for example from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is likely to be a practical solution for heat flux determination in urban areas.
Resumo:
Abstract Preliminary results are presented from a modelling study directed at the spatial variation of frazil ice formation and its effects on flow underneath large ice shelves. The chosen plume and frazil models are briefly introduced, and results from two simplified cases are outlined. It is found that growth and melting dominate the frazil model in the short term. Secondary nucleation converts larger crystals into several nuclei due to crystal collisions (microattrition) and fluid shear and therefore governs the ice crystal dynamics after the initial supercooling has been quenched. Frazil formation is found to have a significant depth-dependence in an idealised study of an Ice Shelf Water plume. Finally, plans for more extensive and realistic studies are discussed.