27 resultados para Logistic regression mixture models
Resumo:
Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.
Resumo:
Using NCANDS data of US child maltreatment reports for 2009, logistic regression, probit analysis, discriminant analysis and an artificial neural network are used to determine the factors which explain the decision to place a child in out-of-home care. As well as developing a new model for 2009, a previous study using 2005 data is replicated. While there are many small differences, the four estimation techniques give broadly the same results, demonstrating the robustness of the results. Similarly, apart from age and sexual abuse, the 2005 and 2009 results are roughly similar. For 2009, child characteristics (particularly child emotional problems) are more important than the nature of the abuse and the situation of the household; while caregiver characteristics are the least important. All these models have low explanatory power.
Resumo:
A neurofuzzy classifier identification algorithm is introduced for two class problems. The initial fuzzy base construction is based on fuzzy clustering utilizing a Gaussian mixture model (GMM) and the analysis of covariance (ANOVA) decomposition. The expectation maximization (EM) algorithm is applied to determine the parameters of the fuzzy membership functions. Then neurofuzzy model is identified via the supervised subspace orthogonal least square (OLS) algorithm. Finally a logistic regression model is applied to produce the class probability. The effectiveness of the proposed neurofuzzy classifier has been demonstrated using a real data set.
Resumo:
We discuss the modeling of dielectric responses of electromagnetically excited networks which are composed of a mixture of capacitors and resistors. Such networks can be employed as lumped-parameter circuits to model the response of composite materials containing conductive and insulating grains. The dynamics of the excited network systems are studied using a state space model derived from a randomized incidence matrix. Time and frequency domain responses from synthetic data sets generated from state space models are analyzed for the purpose of estimating the fraction of capacitors in the network. Good results were obtained by using either the time-domain response to a pulse excitation or impedance data at selected frequencies. A chemometric framework based on a Successive Projections Algorithm (SPA) enables the construction of multiple linear regression (MLR) models which can efficiently determine the ratio of conductive to insulating components in composite material samples. The proposed method avoids restrictions commonly associated with Archie’s law, the application of percolation theory or Kohlrausch-Williams-Watts models and is applicable to experimental results generated by either time domain transient spectrometers or continuous-wave instruments. Furthermore, it is quite generic and applicable to tomography, acoustics as well as other spectroscopies such as nuclear magnetic resonance, electron paramagnetic resonance and, therefore, should be of general interest across the dielectrics community.
Resumo:
This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.
Resumo:
Wine production is largely governed by atmospheric conditions, such as air temperature and precipitation, together with soil management and viticultural/enological practices. Therefore, anthropogenic climate change is likely to have important impacts on the winemaking sector worldwide. An important winemaking region is the Portuguese Douro Valley, which is known by its world-famous Port Wine. The identification of robust relationships between atmospheric factors and wine parameters is of great relevance for the region. A multivariate linear regression analysis of a long wine production series (1932–2010) reveals that high rainfall and cool temperatures during budburst, shoot and inflorescence development (February-March) and warm temperatures during flowering and berry development (May) are generally favourable to high production. The probabilities of occurrence of three production categories (low, normal and high) are also modelled using multinomial logistic regression. Results show that both statistical models are valuable tools for predicting the production in a given year with a lead time of 3–4 months prior to harvest. These statistical models are applied to an ensemble of 16 regional climate model experiments following the SRES A1B scenario to estimate possible future changes. Wine production is projected to increase by about 10 % by the end of the 21st century, while the occurrence of high production years is expected to increase from 25 % to over 60 %. Nevertheless, further model development will be needed to include other aspects that may shape production in the future. In particular, the rising heat stress and/or changes in ripening conditions could limit the projected production increase in future decades.
Resumo:
BACKGROUND/AIMS: Cathepsin S, a protein coded by the CTSS gene, is implicated in adipose tissue biology--this protein enhances adipose tissue development. Our hypothesis is that common variants in CTSS play a role in body weight regulation and in the development of obesity and that these effects are influenced by dietary factors--increased by high protein, glycemic index and energy diets. METHODS: Four tag SNPs (rs7511673, rs11576175, rs10888390 and rs1136774) were selected to capture all common variation in the CTSS region. Association between these four SNPs and several adiposity measurements (BMI, waist circumference, waist for given BMI and being a weight gainer-experiencing the greatest degree of unexplained annual weight gain during follow-up or not) given, where applicable, both as baseline values and gain during the study period (6-8 years) were tested in 11,091 European individuals (linear or logistic regression models). We also examined the interaction between the CTSS variants and dietary factors--energy density, protein content (in grams or in % of total energy intake) and glycemic index--on these four adiposity phenotypes. RESULTS: We found several associations between CTSS polymorphisms and anthropometric traits including baseline BMI (rs11576175 (SNP N°2), p = 0.02, β = -0.2446), and waist change over time (rs7511673 (SNP N°1), p = 0.01, β = -0.0433 and rs10888390 (SNP N°3), p = 0.04, β = -0.0342). In interaction with the percentage of proteins contained in the diet, rs11576175 (SNP N°2) was also associated with the risk of being a weight gainer (p(interaction) = 0.01, OR = 1.0526)--the risk of being a weight gainer increased with the percentage of proteins contained in the diet. CONCLUSION: CTSS variants seem to be nominally associated to obesity related traits and this association may be modified by dietary protein intake.
Resumo:
BACKGROUND: Single nucleotide polymorphisms (SNPs) in genes encoding the components involved in the hypothalamic pathway may influence weight gain and dietary factors may modify their effects. AIM: We conducted a case-cohort study to investigate the associations of SNPs in candidate genes with weight change during an average of 6.8 years of follow-up and to examine the potential effect modification by glycemic index (GI) and protein intake. METHODS AND FINDINGS: Participants, aged 20-60 years at baseline, came from five European countries. Cases ('weight gainers') were selected from the total eligible cohort (n = 50,293) as those with the greatest unexplained annual weight gain (n = 5,584). A random subcohort (n = 6,566) was drawn with the intention to obtain an equal number of cases and noncases (n = 5,507). We genotyped 134 SNPs that captured all common genetic variation across the 15 candidate genes; 123 met the quality control criteria. Each SNP was tested for association with the risk of being a 'weight gainer' (logistic regression models) in the case-noncase data and with weight gain (linear regression models) in the random subcohort data. After accounting for multiple testing, none of the SNPs was significantly associated with weight change. Furthermore, we observed no significant effect modification by dietary factors, except for SNP rs7180849 in the neuromedin β gene (NMB). Carriers of the minor allele had a more pronounced weight gain at a higher GI (P = 2 x 10⁻⁷). CONCLUSIONS: We found no evidence of association between SNPs in the studied hypothalamic genes with weight change. The interaction between GI and NMB SNP rs7180849 needs further confirmation.
Resumo:
OBJECTIVE: Studies have shown that common single-nucleotide polymorphisms (SNPs) in the serotonin 5-HT-2C receptor (HTR2C) are associated with antipsychotic agent-induced weight gain and the development of behavioural and psychological symptoms. We aimed to analyse whether variation in the HTR2C is associated with obesity- and mental health-related phenotypes in a large population-based cohort. METHOD: Six tagSNPs, which capture all common genetic variation in the HTR2C gene, were genotyped in 4978 men and women from the European Prospective Investigation into Cancer (EPIC)-Norfolk study, an ongoing prospective population-based cohort study in the United Kingdom. To confirm borderline significant associations, the -759C/T SNP (rs3813929) was genotyped in the remaining 16 003 individuals from the EPIC-Norfolk study. We assessed social and psychological circumstances using the Health and Life Experiences Questionnaire. Genmod models were used to test associations between the SNPs and the outcomes. Logistic regression was performed to test for association of SNPs with obesity- and mental health- related phenotypes. RESULTS: Of the six HTR2C SNPs, only the T allele of the -759C/T SNP showed borderline significant associations with higher body mass index (BMI) (0.23 kg m(-2); (95% confidence interval (CI): 0.01-0.44); P=0.051) and increased risk of lifetime major depressive disorder (MDD) (Odds ratio (OR): 1.13 (95% CI: 1.01-1.22), P=0.02). The associations between the -759C/T and BMI and lifetime MDD were independent. As associations only achieved borderline significance, we aimed to validate our findings on the -759C/T SNP in the full EPIC-Norfolk cohort (n=20 981). Although the association with BMI remained borderline significant (beta=0.20 kg m(-2); 95% CI: 0.04-0.44, P=0.09), that with lifetime MDD (OR: 1.01; 95% CI: 0.94-1.09, P=0.73) was not replicated. CONCLUSIONS: Our findings suggest that common HTR2C gene variants are unlikely to have a major role in obesity- and mental health-related traits in the general population.
Resumo:
Factors influencing the use of chemotherapy for the initial (6 months) treatment of lung cancer in South East England were investigated. The variables explored as possibly influencing the use of chemotherapy were sex, age, the year of diagnosis, the type of lung cancer, the stage, the index of multiple deprivation and the cancer network of residence. Chi2 analysis and multivariate logistic regression models were used to examine the effect of each of the variables on the use of chemotherapy. The results showed a highly significant trend in use of chemotherapy over time; the adjusted proportion of patients receiving chemotherapy increasing from 13.6% in 1994 to 29.3% in 2003. However, age, cancer network and type of lung cancer had the strongest influence on the use of chemotherapy. This finding is important when we consider that the NHS Cancer Plan aims at improving inequalities in cancer care in the UK.
Resumo:
BACKGROUND: Several studies have shown that adherence to the Mediterranean Diet measured by using the Mediterranean diet score (MDS) is associated with lower obesity risk. The newly proposed Nordic Diet could hold similar beneficial effects. Because of the increasing focus on the interaction between diet and genetic predisposition to adiposity, studies should consider both diet and genetics. OBJECTIVE: We investigated whether FTO rs9939609 and TCF7L2 rs7903146 modified the association between the MDS and Nordic diet score (NDS) and changes in weight (Δweight), waist circumference (ΔWC), and waist circumference adjusted for body mass index (BMI) (ΔWCBMI). DESIGN: We conducted a case-cohort study with a median follow-up of 6.8 y that included 11,048 participants from 5 European countries; 5552 of these subjects were cases defined as individuals with the greatest degree of unexplained weight gain during follow-up. A randomly selected subcohort included 6548 participants, including 5496 noncases. Cases and noncases were compared in analyses by using logistic regression. Continuous traits (ie, Δweight, ΔWC, and ΔWCBMI) were analyzed by using linear regression models in the random subcohort. Interactions were tested by including interaction terms in models. RESULTS: A higher MDS was significantly inversely associated with case status (OR: 0.98; 95% CI: 0.96, 1.00), ΔWC (β = -0.010 cm/y; 95% CI: -0.020, -0.001 cm/y), and ΔWCBMI (β = -0.008; 95% CI:-0.015, -0.001) per 1-point increment but not Δweight (P = 0.53). The NDS was not significantly associated with any outcome. There was a borderline significant interaction between the MDS and TCF7L2 rs7903146 on weight gain (P = 0.05), which suggested a beneficial effect of the MDS only in subjects who carried 1 or 2 risk alleles. FTO did not modify observed associations. CONCLUSIONS: A high MDS is associated with a lower ΔWC and ΔWCBMI, regardless of FTO and TCF7L2 risk alleles. For Δweight, findings were less clear, but the effect may depend on the TCF7L2 rs7903146 variant. The NDS was not associated with anthropometric changes during follow-up.
Resumo:
A new class of parameter estimation algorithms is introduced for Gaussian process regression (GPR) models. It is shown that the integration of the GPR model with probability distance measures of (i) the integrated square error and (ii) Kullback–Leibler (K–L) divergence are analytically tractable. An efficient coordinate descent algorithm is proposed to iteratively estimate the kernel width using golden section search which includes a fast gradient descent algorithm as an inner loop to estimate the noise variance. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.