36 resultados para Local linearization approach
Resumo:
The assessment of building energy efficiency is one of the most effective measures for reducing building energy consumption. This paper proposes a holistic method (HMEEB) for assessing and certifying building energy efficiency based on the D-S (Dempster-Shafer) theory of evidence and the Evidential Reasoning (ER) approach. HMEEB has three main features: (i) it provides both a method to assess and certify building energy efficiency, and exists as an analytical tool to identify improvement opportunities; (ii) it combines a wealth of information on building energy efficiency assessment, including identification of indicators and a weighting mechanism; and (iii) it provides a method to identify and deal with inherent uncertainties within the assessment procedure. This paper demonstrates the robustness, flexibility and effectiveness of the proposed method, using two examples to assess the energy efficiency of two residential buildings, both located in the ‘Hot Summer and Cold Winter’ zone in China. The proposed certification method provides detailed recommendations for policymakers in the context of carbon emission reduction targets and promoting energy efficiency in the built environment. The method is transferable to other countries and regions, using an indicator weighting system to modify local climatic, economic and social factors.
Resumo:
The political response to the complex package of environmental problems which threaten the future of our planet has been to introduce a new agenda of environmental action based on the principles of sustainability and subsidiarity. This has been crystallised in world agreements signed at the Earth Summit in Rio. One of these, Agenda 21, calls for the governments and communities of the world to prepare action plans for their areas which can build consensus between the various stakeholder groups and feed the principles of sustainable development back into their policies and day-to-day practices. This paper explores the experience of Local Agenda 21 type processes at three levels in the South East of England: the regional, county (sub-regional) and local level. In particular it undertakes a critical appraisal of the success of these participatory and consensus-building exercises in developing an integrated and co-ordinated approach to environmental action planning. It concludes that, although much useful work has been done in raising awareness and modifying policy and practice, there are significant cultural and institutional barriers which are hindering progress.
Resumo:
The building sector is one of the highest consumers of energy in the world. This has led to high dependency on using fossil fuel to supply energy without due consideration to its environmental impact. Saudi Arabia has been through rapid development accompanied by population growth, which in turn has increased the demand for construction. However, this fast development has been met without considering sustainable building design. General design practices rely on using international design approaches and features without considering the local climate and aspects of traditional passive design. This is by constructing buildings with a large amount of glass fully exposed to solar radiation. The aim of this paper is to investigate the development of sustainability in passive design and vernacular architecture. Furthermore, it compares them with current building in Saudi Arabia in terms of making the most of the climate. Moreover, it will explore the most sustainable renewable energy that can be used to reduce the environmental impact on modern building in Saudi Arabia. This will be carried out using case studies demonstrating the performance of vernacular design in Saudi Arabia and thus its benefits in terms of environmental, economic and social sustainability. It argues that the adoption of a hybrid approach can improve the energy efficiency as well as reduce the carbon footprint of buildings. This is by combining passive design, learning from the vernacular architecture and implementing innovative sustainable technologies.
Resumo:
Drought characterisation is an intrinsically spatio-temporal problem. A limitation of previous approaches to characterisation is that they discard much of the spatio-temporal information by reducing events to a lower-order subspace. To address this, an explicit 3-dimensional (longitude, latitude, time) structure-based method is described in which drought events are defined by a spatially and temporarily coherent set of points displaying standardised precipitation below a given threshold. Geometric methods can then be used to measure similarity between individual drought structures. Groupings of these similarities provide an alternative to traditional methods for extracting recurrent space-time signals from geophysical data. The explicit consideration of structure encourages the construction of summary statistics which relate to the event geometry. Example measures considered are the event volume, centroid, and aspect ratio. The utility of a 3-dimensional approach is demonstrated by application to the analysis of European droughts (15 °W to 35°E, and 35 °N to 70°N) for the period 1901–2006. Large-scale structure is found to be abundant with 75 events identified lasting for more than 3 months and spanning at least 0.5 × 106 km2. Near-complete dissimilarity is seen between the individual drought structures, and little or no regularity is found in the time evolution of even the most spatially similar drought events. The spatial distribution of the event centroids and the time evolution of the geographic cross-sectional areas strongly suggest that large area, sustained droughts result from the combination of multiple small area (∼106 km2) short duration (∼3 months) events. The small events are not found to occur independently in space. This leads to the hypothesis that local water feedbacks play an important role in the aggregation process.
Resumo:
Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.
Resumo:
Bushmeat is a large but largely invisible contributor to the economies of west and central African countries. Yet the trade is currently unsustainable. Hunting is reducing wildlife populations, driving more vulnerable species to local and regional extinction, and threatening biodiversity. This paper uses a commodity chain approach to explore the bushmeat trade and to demonstrate why an interdisciplinary approach is required if the trade is to be sustainable in the future.
Resumo:
In this paper we propose an alternative model of, what is often called, land value capture in the planning system. Based on development viability models, negotiations and policy formation regarding the level of planning obligations have taken place at the local level with little clear guidance on technique, approach and method. It is argued that current approaches are regressive and fail to reflect how the ability of sites to generate planning gain can vary over time and between sites. The alternative approach suggested here attempts to rationalise rather than replace the existing practice of development viability appraisal. It is based upon the assumption that schemes with similar development values should produce similar levels of return to the landowner, developer and other stakeholders in the development as well as similar levels of planning obligations in all parts of the country. Given the high level of input uncertainty in viability modelling, a simple viability model is ‘good enough’ to quantify the maximum level of planning obligations for a given level of development value. We have argued that such an approach can deliver a more durable, equitable, simpler, consistent and cheaper method for policy formation regarding planning obligations.
Resumo:
Urbanization related alterations to the surface energy balance impact urban warming (‘heat islands’), the growth of the boundary layer, and many other biophysical processes. Traditionally, in situ heat flux measures have been used to quantify such processes, but these typically represent only a small local-scale area within the heterogeneous urban environment. For this reason, remote sensing approaches are very attractive for elucidating more spatially representative information. Here we use hyperspectral imagery from a new airborne sensor, the Operative Modular Imaging Spectrometer (OMIS), along with a survey map and meteorological data, to derive the land cover information and surface parameters required to map spatial variations in turbulent sensible heat flux (QH). The results from two spatially-explicit flux retrieval methods which use contrasting approaches and, to a large degree, different input data are compared for a central urban area of Shanghai, China: (1) the Local-scale Urban Meteorological Parameterization Scheme (LUMPS) and (2) an Aerodynamic Resistance Method (ARM). Sensible heat fluxes are determined at the full 6 m spatial resolution of the OMIS sensor, and at lower resolutions via pixel aggregation and spatial averaging. At the 6 m spatial resolution, the sensible heat flux of rooftop dominated pixels exceeds that of roads, water and vegetated areas, with values peaking at ∼ 350 W m− 2, whilst the storage heat flux is greatest for road dominated pixels (peaking at around 420 W m− 2). We investigate the use of both OMIS-derived land surface temperatures made using a Temperature–Emissivity Separation (TES) approach, and land surface temperatures estimated from air temperature measures. Sensible heat flux differences from the two approaches over the entire 2 × 2 km study area are less than 30 W m− 2, suggesting that methods employing either strategy maybe practica1 when operated using low spatial resolution (e.g. 1 km) data. Due to the differing methodologies, direct comparisons between results obtained with the LUMPS and ARM methods are most sensibly made at reduced spatial scales. At 30 m spatial resolution, both approaches produce similar results, with the smallest difference being less than 15 W m− 2 in mean QH averaged over the entire study area. This is encouraging given the differing architecture and data requirements of the LUMPS and ARM methods. Furthermore, in terms of mean study QH, the results obtained by averaging the original 6 m spatial resolution LUMPS-derived QH values to 30 and 90 m spatial resolution are within ∼ 5 W m− 2 of those derived from averaging the original surface parameter maps prior to input into LUMPS, suggesting that that use of much lower spatial resolution spaceborne imagery data, for example from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is likely to be a practical solution for heat flux determination in urban areas.
Resumo:
A key step in many numerical schemes for time-dependent partial differential equations with moving boundaries is to rescale the problem to a fixed numerical mesh. An alternative approach is to use a moving mesh that can be adapted to focus on specific features of the model. In this paper we present and discuss two different velocity-based moving mesh methods applied to a two-phase model of avascular tumour growth formulated by Breward et al. (2002) J. Math. Biol. 45(2), 125-152. Each method has one moving node which tracks the moving boundary. The first moving mesh method uses a mesh velocity proportional to the boundary velocity. The second moving mesh method uses local conservation of volume fraction of cells (masses). Our results demonstrate that these moving mesh methods produce accurate results, offering higher resolution where desired whilst preserving the balance of fluxes and sources in the governing equations.
Resumo:
Windstorms are a main feature of the European climate and exert strong socioeconomic impacts. Large effort has been made in developing and enhancing models to simulate the intensification of windstorms, resulting footprints, and associated impacts. Simulated wind or gust speeds usually differ from observations, as regional climate models have biases and cannot capture all local effects. An approach to adjust regional climate model (RCM) simulations of wind and wind gust toward observations is introduced. For this purpose, 100 windstorms are selected and observations of 173 (111) test sites of the German Weather Service are considered for wind (gust) speed. Theoretical Weibull distributions are fitted to observed and simulated wind and gust speeds, and the distribution parameters of the observations are interpolated onto the RCM computational grid. A probability mapping approach is applied to relate the distributions and to correct the modeled footprints. The results are not only achieved for single test sites but for an area-wide regular grid. The approach is validated using root-mean-square errors on event and site basis, documenting that the method is generally able to adjust the RCM output toward observations. For gust speeds, an improvement on 88 of 100 events and at about 64% of the test sites is reached. For wind, 99 of 100 improved events and ~84% improved sites can be obtained. This gives confidence on the potential of the introduced approach for many applications, in particular those considering wind data.
Resumo:
Purpose – Multinationals have always needed an operating model that works – an effective plan for executing their most important activities at the right levels of their organization, whether globally, regionally or locally. The choices involved in these decisions have never been obvious, since international firms have consistently faced trade‐offs between tailoring approaches for diverse local markets and leveraging their global scale. This paper seeks a more in‐depth understanding of how successful firms manage the global‐local trade‐off in a multipolar world. Design methodology/approach – This paper utilizes a case study approach based on in‐depth senior executive interviews at several telecommunications companies including Tata Communications. The interviews probed the operating models of the companies we studied, focusing on their approaches to organization structure, management processes, management technologies (including information technology (IT)) and people/talent. Findings – Successful companies balance global‐local trade‐offs by taking a flexible and tailored approach toward their operating‐model decisions. The paper finds that successful companies, including Tata Communications, which is profiled in‐depth, are breaking up the global‐local conundrum into a set of more manageable strategic problems – what the authors call “pressure points” – which they identify by assessing their most important activities and capabilities and determining the global and local challenges associated with them. They then design a different operating model solution for each pressure point, and repeat this process as new strategic developments emerge. By doing so they not only enhance their agility, but they also continually calibrate that crucial balance between global efficiency and local responsiveness. Originality/value – This paper takes a unique approach to operating model design, finding that an operating model is better viewed as several distinct solutions to specific “pressure points” rather than a single and inflexible model that addresses all challenges equally. Now more than ever, developing the right operating model is at the top of multinational executives' priorities, and an area of increasing concern; the international business arena has changed drastically, requiring thoughtfulness and flexibility instead of standard formulas for operating internationally. Old adages like “think global and act local” no longer provide the universal guidance they once seemed to.
Resumo:
A procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) is proposed for operational rainfall estimation using rain gauges and radar data. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on Barnes' objective analysis scheme (OAS), whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, a spatially variable adjustment with multiplicative factors, and ordinary cokriging.
Resumo:
Integrating top fruit production into an agroforestry system, where trees are integrated with arable crop production may have a beneficial effect on the control of plant pathogens such as scab (Venturia inaequalis). Apple yields and pest and disease levels were assessed in a novel apple/arable agroforestry system in Suffolk, and compared with a modern local organic orchard in 2012. Despite 2012 being a very bad year for apple production in the UK, apple yields in the agroforestry system appeared to be comparable with standard figures when scaled up from 2.5% land area under apple production to 100% apples, and even at just 2.5% cover, outperformed the organic orchard used for comparison. Initial indications are that scab levels were over twice as high in the organic orchard than in the agroforestry, indicating that this approach may offer some potential in reducing copper use in organic apple production. However, further research will be required to confirm these early results.
Resumo:
For general home monitoring, a system should automatically interpret people’s actions. The system should be non-intrusive, and able to deal with a cluttered background, and loose clothes. An approach based on spatio-temporal local features and a Bag-of-Words (BoW) model is proposed for single-person action recognition from combined intensity and depth images. To restore the temporal structure lost in the traditional BoW method, a dynamic time alignment technique with temporal binning is applied in this work, which has not been previously implemented in the literature for human action recognition on depth imagery. A novel human action dataset with depth data has been created using two Microsoft Kinect sensors. The ReadingAct dataset contains 20 subjects and 19 actions for a total of 2340 videos. To investigate the effect of using depth images and the proposed method, testing was conducted on three depth datasets, and the proposed method was compared to traditional Bag-of-Words methods. Results showed that the proposed method improves recognition accuracy when adding depth to the conventional intensity data, and has advantages when dealing with long actions.
Resumo:
The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies.