55 resultados para Liam McCormick
Resumo:
Currently, the Genomic Threading Database (GTD) contains structural assignments for the proteins encoded within the genomes of nine eukaryotes and 101 prokaryotes. Structural annotations are carried out using a modified version of GenTHREADER, a reliable fold recognition method. The Gen THREADER annotation jobs are distributed across multiple clusters of processors using grid technology and the predictions are deposited in a relational database accessible via a web interface at http://bioinf.cs.ucl.ac.uk/GTD. Using this system, up to 84% of proteins encoded within a genome can be confidently assigned to known folds with 72% of the residues aligned. On average in the GTD, 64% of proteins encoded within a genome are confidently assigned to known folds and 58% of the residues are aligned to structures.
Resumo:
The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.
Resumo:
Dynamically disordered regions appear to be relatively abundant in eukaryotic proteomes. The DISOPRED server allows users to submit a protein sequence, and returns a probability estimate of each residue in the sequence being disordered. The results are sent in both plain text and graphical formats, and the server can also supply predictions of secondary structure to provide further structural information.
Resumo:
An automatic method for recognizing natively disordered regions from amino acid sequence is described and benchmarked against predictors that were assessed at the latest critical assessment of techniques for protein structure prediction (CASP) experiment. The method attains a Wilcoxon score of 90.0, which represents a statistically significant improvement on the methods evaluated on the same targets at CASP. The classifier, DISOPRED2, was used to estimate the frequency of native disorder in several representative genomes from the three kingdoms of life. Putative, long (>30 residue) disordered segments are found to occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins. The function of proteins with long predicted regions of disorder was investigated using the gene ontology annotations supplied with the Saccharomyces genome database. The analysis of the yeast proteome suggests that proteins containing disorder are often located in the cell nucleus and are involved in the regulation of transcription and cell signalling. The results also indicate that native disorder is associated with the molecular functions of kinase activity and nucleic acid binding.
Resumo:
The Genomic Threading Database currently contains structural annotations for the genomes of over 100 recently sequenced organisms. Annotations are carried out by using our modified GenTHREADER software and through implementing grid technology.
Resumo:
World-wide structural genomics initiatives are rapidly accumulating structures for which limited functional information is available. Additionally, state-of-the art structural prediction programs are now capable of generating at least low resolution structural models of target proteins. Accurate detection and classification of functional sites within both solved and modelled protein structures therefore represents an important challenge. We present a fully automatic site detection method, FuncSite, that uses neural network classifiers to predict the location and type of functionally important sites in protein structures. The method is designed primarily to require only backbone residue positions without the need for specific side-chain atoms to be present. In order to highlight effective site detection in low resolution structural models FuncSite was used to screen model proteins generated using mGenTHREADER on a set of newly released structures. We found effective metal site detection even for moderate quality protein models illustrating the robustness of the method.
Resumo:
The results of applying a fragment-based protein tertiary structure prediction method to the prediction of 14 CASP5 target domains are described. The method is based on the assembly of supersecondary structural fragments taken from highly resolved protein structures using a simulated annealing algorithm. A number of good predictions for proteins with novel folds were produced, although not always as the first model. For two fold recognition targets, FRAGFOLD produced the most accurate model in both cases, despite the fact that the predictions were not based on a template structure. Although clear progress has been made in improving FRAGFOLD since CASP4, the ranking of final models still seems to be the main problem that needs to be addressed before the next CASP experiment
Resumo:
Motivation: A new method that uses support vector machines (SVMs) to predict protein secondary structure is described and evaluated. The study is designed to develop a reliable prediction method using an alternative technique and to investigate the applicability of SVMs to this type of bioinformatics problem. Methods: Binary SVMs are trained to discriminate between two structural classes. The binary classifiers are combined in several ways to predict multi-class secondary structure. Results: The average three-state prediction accuracy per protein (Q3) is estimated by cross-validation to be 77.07 ± 0.26% with a segment overlap (Sov) score of 73.32 ± 0.39%. The SVM performs similarly to the 'state-of-the-art' PSIPRED prediction method on a non-homologous test set of 121 proteins despite being trained on substantially fewer examples. A simple consensus of the SVM, PSIPRED and PROFsec achieves significantly higher prediction accuracy than the individual methods. Availability: The SVM classifier is available from the authors. Work is in progress to make the method available on-line and to integrate the SVM predictions into the PSIPRED server.
Resumo:
Motivation: In order to enhance genome annotation, the fully automatic fold recognition method GenTHREADER has been improved and benchmarked. The previous version of GenTHREADER consisted of a simple neural network which was trained to combine sequence alignment score, length information and energy potentials derived from threading into a single score representing the relationship between two proteins, as designated by CATH. The improved version incorporates PSI-BLAST searches, which have been jumpstarted with structural alignment profiles from FSSP, and now also makes use of PSIPRED predicted secondary structure and bi-directional scoring in order to calculate the final alignment score. Pairwise potentials and solvation potentials are calculated from the given sequence alignment which are then used as inputs to a multi-layer, feed-forward neural network, along with the alignment score, alignment length and sequence length. The neural network has also been expanded to accommodate the secondary structure element alignment (SSEA) score as an extra input and it is now trained to learn the FSSP Z-score as a measurement of similarity between two proteins. Results: The improvements made to GenTHREADER increase the number of remote homologues that can be detected with a low error rate, implying higher reliability of score, whilst also increasing the quality of the models produced. We find that up to five times as many true positives can be detected with low error rate per query. Total MaxSub score is doubled at low false positive rates using the improved method.
Resumo:
If secondary structure predictions are to be incorporated into fold recognition methods, an assessment of the effect of specific types of errors in predicted secondary structures on the sensitivity of fold recognition should be carried out. Here, we present a systematic comparison of different secondary structure prediction methods by measuring frequencies of specific types of error. We carry out an evaluation of the effect of specific types of error on secondary structure element alignment (SSEA), a baseline fold recognition method. The results of this evaluation indicate that missing out whole helix or strand elements, or predicting the wrong type of element, is more detrimental than predicting the wrong lengths of elements or overpredicting helix or strand. We also suggest that SSEA scoring is an effective method for assessing accuracy of secondary structure prediction and perhaps may also provide a more appropriate assessment of the “usefulness” and quality of predicted secondary structure, if secondary structure alignments are to be used in fold recognition.
Resumo:
The elucidation of the domain content of a given protein sequence in the absence of determined structure or significant sequence homology to known domains is an important problem in structural biology. Here we address how successfully the delineation of continuous domains can be accomplished in the absence of sequence homology using simple baseline methods, an existing prediction algorithm (Domain Guess by Size), and a newly developed method (DomSSEA). The study was undertaken with a view to measuring the usefulness of these prediction methods in terms of their application to fully automatic domain assignment. Thus, the sensitivity of each domain assignment method was measured by calculating the number of correctly assigned top scoring predictions. We have implemented a new continuous domain identification method using the alignment of predicted secondary structures of target sequences against observed secondary structures of chains with known domain boundaries as assigned by Class Architecture Topology Homology (CATH). Taking top predictions only, the success rate of the method in correctly assigning domain number to the representative chain set is 73.3%. The top prediction for domain number and location of domain boundaries was correct for 24% of the multidomain set (±20 residues). These results have been put into context in relation to the results obtained from the other prediction methods assessed
Resumo:
What constitutes a baseline level of success for protein fold recognition methods? As fold recognition benchmarks are often presented without any thought to the results that might be expected from a purely random set of predictions, an analysis of fold recognition baselines is long overdue. Given varying amounts of basic information about a protein—ranging from the length of the sequence to a knowledge of its secondary structure—to what extent can the fold be determined by intelligent guesswork? Can simple methods that make use of secondary structure information assign folds more accurately than purely random methods and could these methods be used to construct viable hierarchical classifications?
Resumo:
The PSIPRED protein structure prediction server allows users to submit a protein sequence, perform a prediction of their choice and receive the results of the prediction both textually via e-mail and graphically via the web. The user may select one of three prediction methods to apply to their sequence: PSIPRED, a highly accurate secondary structure prediction method; MEMSAT 2, a new version of a widely used transmembrane topology prediction method; or GenTHREADER, a sequence profile based fold recognition method.